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Notation and Conventions

Throughout this work, we adopt the following mathematical conventions:

Scalars: Lowercase italic letters (e.g., t, r, T)
Vectors: Lowercase bold letters (e.g., x, )μ
Matrices: Uppercase bold letters (e.g., , A)Σ

Random variables: Uppercase italic letters (e.g., X, Wt)
Operators: - E[·] = Expectation operator - Var[·] = Variance operator - Cov[·,·] = Covariance 
operator - / x = Partial derivative with respect to x - d/dx = Total derivative with respect to x∂ ∂

Time conventions: - t = Time (years unless otherwise specified) - t = Time step -  = Δ 𝒯
Terminal time (time horizon)
- T = temperature anomaly (°C above pre-industrial)

Financial variables: - r = Discount rate or risk-free rate - V = Asset value - CF = Cash flow - Q = 
Output or production - K = Capital stock

Climate variables: - T = Temperature anomaly (°C above pre-industrial) - F = Radiative forcing 
(W/m²) - M = Carbon mass or concentration - E = Emissions (GtCO  or GtC)₂



Chapter 1: Climate Physics for Financial Modeling

1.1 Introduction

Figure 1.1: Earth’s Energy Balance

Figure 1.1: Earth’s Energy Balance

The quantification of climate-related financial risk requires a foundational understanding of the 
physical processes governing Earth’s climate system. This chapter establishes the mathematical 
framework linking greenhouse gas emissions to temperature change, which forms the basis for all 



subsequent financial modeling. We focus on the energy balance approach, which provides tractable 
yet scientifically grounded models suitable for integration with economic and financial frameworks 
[1, 2].

The fundamental insight is that climate change results from an imbalance in Earth’s energy budget. 
Greenhouse gases (GHGs) alter the radiative properties of the atmosphere, trapping outgoing 
longwave radiation and causing warming. This process can be quantified through the concept of 
radiative forcing, measured in watts per square meter (W/m²) [3].

1.2 Radiative Forcing and the Greenhouse Effect

Definition 1.1 (Radiative Forcing): Radiative forcing is the change in net irradiance at the 
tropopause after allowing for stratospheric temperatures to readjust to radiative equilibrium, but with
surface and tropospheric temperatures held fixed at unperturbed values [3].

The radiative forcing from CO  is given by the logarithmic relationship:₂

FCO 2
=F2x⋅

ln(C /C0)
ln(2)

(Eq. 1.1)

Note: CO  forcing parameterization (F   3.71 W·m ²) follows Myhre et al.₂ ₂ₓ ≈ ⁻  (1998); see IPCC 
AR6 WGI Chapter 7 for context.

where: - FCO 2 = radiative forcing from CO  (W/m²) - ₂ F2x = forcing from doubling CO  = 3.71 ± ₂
0.15 W/m² [3, 4] - C = current atmospheric CO  concentration (ppm) - ₂ C0 = reference 
concentration (typically 280 ppm, pre-industrial)

The logarithmic form reflects the saturation of absorption bands: each additional unit of CO  has a ₂
diminishing marginal effect on forcing [5].

Table 1.1: Radiative Forcing by Greenhouse Gas

Gas Pre-industrial (ppm) Current (2023) Forcing (W/m²) Lifetime (years)
CO₂ 280 420 2.16 300-1000*
CH₄ 0.722 1.92 0.54 12.4



N O₂ 0.270 0.336 0.21 121
CFC-
12

0 0.000503 0.17 100

*CO  has no single lifetime; different removal processes operate on different timescales [6].₂

Source: IPCC AR6 Working Group I [3].

1.2.1 Multi-Gas Forcing

For other greenhouse gases, the forcing relationships differ due to their distinct radiative properties:

Methane (CH ):₄

FCH 4
=0.036 (√CC H 4

−√CC H 4 , 0) (Eq. 1.1a)

where concentrations are in ppb (parts per billion).

Nitrous Oxide (N O):₂

FN2O=0.12 (√CN2O−√CN 2O,0 )(Eq. 1.1b)

Total Anthropogenic Forcing:

F total=FCO 2
+FCH 4

+FN 2O+Fhalocarbons+Faerosols (Eq. 1.1c)

Note that aerosol forcing is negative (cooling effect), partially offsetting GHG warming.

1.3 The Forcing-Feedback Equilibrium Model

The relationship between radiative forcing and equilibrium temperature change is governed by the 
climate feedback parameter.

Theorem 1.1 (Forcing-Feedback Equilibrium):

At equilibrium, the change in global mean surface temperature T is related to radiative forcing F Δ

by:

ΔT eq=
F
λ

(Eq. 1.2)



where  is the climate feedback parameter (W/m²/K).λ

Proof:

• At equilibrium, the change in net radiation at the top of the atmosphere must be zero.

• The radiative forcing F represents the initial perturbation to the energy balance.

• As the surface warms by T, the system responds through various feedbacks (Planck response,Δ
water vapor, lapse rate, albedo, clouds). The total feedback can be linearized as:

ΔR feedback=−λ⋅ ΔT (Eq. 1.3)

where the negative sign indicates that positive T leads to increased outgoing radiation (negative Δ
feedback from Planck response dominates).

(d) At equilibrium: F+ΔRfeedback=0

(e) Substituting Eq. 1.3: F−λ⋅ ΔT=0

(f) Solving for T yields Eq. 1.2. Δ ∎

The climate feedback parameter  can be decomposed into individual feedback components:λ

λ=λPlanck+λWV+λLR+ λalbedo+ λcloud (Eq. 1.4)

Table 1.2: Climate Feedback Components

Feedback Symbol Value (W/m²/K) Sign Physical Mechanism
Planck λP -3.2 Negative Stefan-Boltzmann radiation
Water Vapor λWV +1.8 Positive Increased atmospheric H O₂
Lapse Rate λLR -0.5 Negative Tropospheric warming profile
Albedo λalb +0.4 Positive Ice/snow melt reduces reflectivity
Cloud λcloud +0.4 Positive Net cloud feedback (uncertain)
Total λ -1.1 Negative Net stabilizing



Source: IPCC AR6 [3, Chapter 7].

Important Note on Sign Convention: The net feedback parameter  = -1.1 W/m²/K is negative, λ

which represents a net stabilizing (negative) feedback. The negative sign arises because the 
Planck response (λP = -3.2) dominates the positive feedbacks. When  < 0, we write Eq. 1.2 as:λ

ΔT eq=
F

¿ λ∨¿= F
1.1

(with λ = -1.1)¿

This ensures T > 0 for F > 0, as physically required.Δ

1.4 Climate Sensitivity

Definition 1.2 (Equilibrium Climate Sensitivity): The equilibrium climate sensitivity (ECS) is the 
equilibrium change in global mean surface temperature following a doubling of atmospheric CO  ₂
concentration [3].

From Eq. 1.1 and 1.2, with C = 2C :₀

ECS=
F2x

¿ λ∨¿ (Eq. 1.5)¿

IPCC AR6 Assessment [3]: - Best estimate: ECS = 3.0°C - Likely range: 2.5°C to 4.0°C (66% 
probability) - Very likely range: 2.0°C to 5.0°C (90% probability)

This represents a significant narrowing of uncertainty compared to previous assessments, achieved 
through multiple lines of evidence including paleoclimate records, historical observations, and 
process understanding [7].

Corollary 1.1: The no-feedback climate response (if  = λ λPlanck only) would be:

ΔT no−feedback=
F2x

¿ λPlanck∨¿=3.71
3.2

≈1.16 °C ¿

The ratio ECS / TΔ no-feedback  2.6 quantifies the amplification from positive feedbacks.≈



1.5 Transient Climate Response

Equilibrium climate sensitivity describes the long-term steady state, but financial risk assessment 
requires understanding the transient response on decision-relevant timescales (decades).

Definition 1.3 (Transient Climate Response): The transient climate response (TCR) is the change in
global mean surface temperature at the time of CO  doubling in a scenario where CO  increases at₂ ₂
1% per year [3].

TCR is always less than ECS because: 1. The deep ocean has not equilibrated 2. Heat is still being
absorbed by the climate system

Relationship: Empirically, TCR  0.6 × ECS [8].≈

IPCC AR6 Assessment [3]: - Best estimate: TCR = 1.8°C - Likely range: 1.4°C to 2.2°C

For financial modeling, TCR is more relevant than ECS for projections to 2050-2100.

1.5.1 Two-Layer Energy Balance Model

To capture transient dynamics, we extend the simple equilibrium model to a two-layer system 
representing the upper ocean/atmosphere and deep ocean [2]:

Upper layer (fast response):

C1

dT 1

dt
=F−λT1−γ (T1−T2)(Eq. 1.6)

Deep layer (slow response):

C2

dT 2

dt
=γ (T 1−T 2) (Eq. 1.7)

where: - T 1 = upper layer temperature anomaly (°C) - T 2 = deep ocean temperature anomaly (°C) -
C1 = heat capacity of upper layer  8 W·yr·m ²·K ¹ - ≈ ⁻ ⁻ C2 = heat capacity of deep ocean  100 ≈
W·yr·m ²·K ¹ - ⁻ ⁻ γ = ocean heat uptake coefficient  0.7 W·m ²·K ¹≈ ⁻ ⁻

This system exhibits two timescales: - Fast timescale:   C /   7 years - Slow timescale:   τ₁ ≈ ₁ λ ≈ τ₂ ≈

C /   140 years₂ γ ≈



1.6 Carbon Cycle Dynamics

The relationship between emissions and atmospheric concentration requires modeling the carbon 
cycle. We present a simplified three-box model suitable for financial applications [9].

Model Structure:

The carbon cycle is represented by three reservoirs: - Atmosphere (Matm) - Upper ocean and 
terrestrial biosphere (Mupper) - Deep ocean (Mdeep)

Governing Equations:
dM atm

dt
=E(t )−k1(M atm−M atm ,eq)−k2(M atm−Mupper)(Eq. 1.8)

dM upper

dt
=k2(M atm−M upper)−k3(M upper−M deep)(Eq. 1.9)

dM deep

dt
=k3(M upper−M deep)(Eq. 1.10)

Calibration note: For policy analysis, simple box models should be calibrated against impulse-
response functions (IRFs) such as Joos et al. (2013). The historical airborne fraction (~0.44) is not 
constant as sinks evolve (Global Carbon Budget).

where: - E(t) = anthropogenic emissions (GtC/year) - k  = 0.02 year ¹ (land uptake rate) - k  = ₁ ⁻ ₂
0.05 year ¹ (atmosphere-upper ocean exchange) - k  = 0.003 year ¹ (upper-deep ocean exchange) -⁻ ₃ ⁻
Matm,eq = equilibrium atmospheric carbon (588 GtC for pre-industrial)

Airborne Fraction:

The fraction of emitted CO  remaining in the atmosphere is:₂

AF(t )=
M atm (t)−M atm(0)

∫
0

t

E (s)ds
(Eq. 1.11)

Historically, AF  0.44 (44% remains airborne, 56% absorbed by land and ocean sinks) [10].≈



Important Note: The airborne fraction may increase over time as sinks saturate, creating a positive 
feedback [11]. This is not captured in the simple linear model above but is included in 
comprehensive Earth System Models.

1.7 Worked Examples

Example 1.1: Calculating Radiative Forcing

Problem: Calculate the current radiative forcing from CO  given: - Pre-industrial concentration: C  ₂ ₀
= 280 ppm - Current concentration: C = 420 ppm - F  = 3.71 W/m²₂ₓ

Solution:

Using Eq. 1.1:

FCO 2
=3.71× ln(420/280)

ln(2)
=3.71× 0.4055

0.6931
=3.71×0.585=2.17  W/m2

This matches the IPCC AR6 estimate of 2.16 W/m² [3]. ∎

Example 1.2: Equilibrium Temperature from Forcing

Problem: Given the forcing calculated above and  = -1.1 W/m²/K, calculate the equilibrium λ

temperature change.

Solution:

Using Eq. 1.2:

ΔT eq=
F

¿ λ∨¿=2.17
1.1

=1.97 °C ¿

This represents the committed warming from current CO  levels alone (excluding other GHGs and ₂
assuming equilibrium is reached). ∎



Example 1.3: Projecting Future Concentrations

Problem: If emissions remain constant at E = 10 GtC/year and the airborne fraction is 0.44, how 
much will atmospheric CO  increase in 30 years?₂

Solution:

Atmospheric increase = AF × Total emissions

ΔM atm=0.44×(10  GtC/year×30  years)=132  GtC

Converting to ppm (1 ppm  2.13 GtC):≈

ΔC= 132
2.13

=62  ppm

Future concentration: C(2055) = 420 + 62 = 482 ppm. ∎

Example 1.4: Multi-Gas Forcing Calculation 

Problem: Calculate the total radiative forcing in 2023 from CO , CH , and N O given: - CO : ₂ ₄ ₂ ₂
280 ppm  420 ppm - CH : 722 ppb  1920 ppb - N O: 270 ppb  336 ppb→ ₄ → ₂ →

Solution:

CO  forcing₂  (from Example 1.1):

FCO 2
=2.17  W/m2

CH  forcing₄  using Eq. 1.1a:

FCH 4
=0.036(√1920−√722)=0.036(43.82−26.87)=0.036×16.95=0.61  W/m2

N O forcing₂  using Eq. 1.1b:

FN2O=0.12(√336−√270)=0.12(18.33−16.43)=0.12×1.90=0.23  W/m2

Total forcing:

F total=2.17+0.61+0.23=3.01  W/m2



This is consistent with IPCC AR6 estimates of ~3.0 W/m² for well-mixed greenhouse gases. ∎

Example 1.5: RCP8.5 Forcing Trajectory 

Problem: Calculate the radiative forcing in 2100 under RCP8.5, which projects CO  concentration ₂
of 936 ppm.

Solution:

Using Eq. 1.1 with C  = 280 ppm and C = 936 ppm:₀

FCO 2
(2100)=3.71× ln (936/280)

ln (2)
=3.71× 1.205

0.693
=3.71×1.739=6.45  W/m2

This is approximately 1.74 CO  doublings (since 936/280  3.34 = 2^1.74).₂ ≈

Including other GHGs and aerosols, RCP8.5 reaches total forcing of ~8.5 W/m² by 2100 (hence 
the name). ∎

Example 1.6: Regional Temperature Scaling 

Problem: If global mean temperature increases by 2.0°C, estimate the temperature increase over 
land and ocean separately, given that land warms ~1.6 times faster than the global mean and ocean
warms ~0.7 times the global mean.

Solution:

Land warming:

ΔT land=1.6×ΔT global=1.6×2.0=3.2° C

Ocean warming:

ΔT ocean=0.7×ΔT global=0.7×2.0=1.4 °C



Verification (area-weighted average): With land fraction fland  0.29 and ocean fraction f≈ ocean  ≈
0.71:

ΔT global=f land⋅ ΔT land+ f ocean⋅ΔT ocean

¿0.29×3.2+0.71×1.4=0.93+0.99=1.92 °C≈2.0 °C

✓

This regional heterogeneity is critical for financial risk assessment, as most economic activity occurs
on land. ∎

Example 1.7: Ocean Heat Uptake Efficiency 

Problem: Using the two-layer model (Eqs. 1.6-1.7), calculate the ocean heat uptake rate when T  = ₁
1.2°C and T  = 0.3°C, with  = 0.7 W·m ²·K ¹.₂ γ ⁻ ⁻

Solution:

The ocean heat uptake is given by the heat flux from upper to deep ocean:

Qocean=γ (T1−T2)=0.7×(1.2−0.3)=0.7×0.9=0.63  W/m 2

This represents the rate at which heat is being absorbed by the deep ocean, delaying surface 
warming. Over the entire Earth surface (5.1 × 10¹  m²):⁴

Total heat uptake=0.63×5.1×1014=3.2×1014  W=320  TW

This is equivalent to the energy of ~200,000 nuclear power plants continuously operating. ∎

Example 1.8: Carbon Budget for 1.5°C Target 

Problem: Calculate the remaining carbon budget to limit warming to 1.5°C above pre-industrial, 
given: - Current warming: 1.1°C - TCR = 1.8°C - TCRE (Transient Climate Response to 
cumulative CO  Emissions) = 0.45°C per 1000 GtCO₂ ₂



Solution:

Remaining warming budget:

ΔT remaining=1.5−1.1=0.4 °C

Remaining carbon budget:

Bremaining=
ΔT remaining

TCRE
= 0.4

0.45/1000
=0.4×1000

0.45
=889  GtCO2

At current emissions rate (40 GtCO /year):₂

Years remaining=889
40

=22.2  years

This suggests the 1.5°C budget would be exhausted around 2047 at current emission rates, 
highlighting the urgency of mitigation. This calculation is fundamental for financial scenario 
analysis and stranded asset risk. ∎

1.8 Supplementary Problems

Basic Problems (1-5)
• Derive the relationship between the feedback parameter  and climate sensitivity S = 1/ .λ λ  

Show that small changes in  lead to large changes in S when  is small. Specifically, prove λ λ

that:

dS
dλ

=−1
λ2

• and evaluate this derivative at  = 1.0 and  = 0.5 W/m²/K.λ λ

• Calculate the forcing from a 50% increase in methane concentration (from 1.92 to 2.88 ppm)
using the formula: FCH₄ = 0.036 × ( C - C )  W/m². Compare this to the forcing from a 50%√ √ ₀
increase in CO  (from 420 to 630 ppm).₂

• Prove that the three-box carbon cycle model (Eqs. 1.8-1.10) conserves total carbon mass. 
Show that:



d
dt

(M atm+Mupper+M deep)=E (t)

• Estimate the time constant for atmospheric CO  to equilibrate with the upper ocean₂  (  = τ

1/k ). Given k  = 0.05 year ¹, calculate  and interpret the result.₂ ₂ ⁻ τ

• Using the transient climate response (TCR = 1.8°C), estimate the temperature change in 
2050 under RCP4.5 (which reaches ~500 ppm CO -equivalent by 2050). Assume linear ₂
relationship between forcing and TCR.

Intermediate Problems (6-10)
(f) Decompose the climate feedback parameter. Given individual feedbacks from Table 1.2, 

verify that λtotal = -1.1 W/m²/K. Then calculate the “feedback factor” f = 1/(1 - gΣ i) where 
gi = -λi/λPlanck for each feedback component.

(g) Solve the two-layer energy balance model analytically for the case of constant forcing F 
applied at t = 0. Find T (t) and T (t) assuming initial conditions T (0) = T (0) = 0.₁ ₂ ₁ ₂

(h) Calculate the airborne fraction evolution. If land and ocean sinks saturate such that k  ₁
decreases from 0.02 to 0.015 year ¹ and k  decreases from 0.05 to 0.04 year ¹, how does the⁻ ₂ ⁻
steady-state airborne fraction change?

(i) Estimate the “committed warming” from current CO  levels. If we stopped all emissions ₂
today (E = 0), how much additional warming would occur as the system equilibrates? Use 
ECS = 3.0°C and current forcing F = 2.17 W/m².

(j) Derive the relationship between ECS and TCR using the two-layer model. Show that 
TCR/ECS = (1 + )/(1 + ·C /C ) where  = / .κ κ ₂ ₁ κ γ λ

Advanced Problems (11-15)
(k) Uncertainty propagation in ECS. Given F  = 3.71 ± 0.15 W/m² and  = -1.1 ± 0.3 W/m²/K₂ₓ λ

(both normally distributed), calculate the probability distribution of ECS using:

(a) First-order error propagation



(b) Monte Carlo simulation (10,000 samples) Compare the results and explain any 
differences.

(l) Non-linear carbon cycle feedback. Modify the three-box model to include temperature-
dependent sink rates: k (T) = k ,0(1 - T) where  = 0.05 K ¹. Solve numerically for ₁ ₁ α α ⁻
atmospheric CO  concentration from 2020-2100 under RCP8.5 emissions and compare to the ₂
linear case.

(m) Regional climate patterns. Using the land/ocean warming ratio from Example 1.6, derive a 
simple model for continental interior warming as a function of distance from coast. Assume 
warming ratio varies as: R(d) = 0.7 + 0.9(1 - e^(-d/L)) where d is distance from coast and L 
= 1000 km.

(n) Paleoclimate constraint on ECS. The Last Glacial Maximum (LGM, 21,000 years ago) had 
global temperature 5°C colder than pre-industrial and CO  concentration of 180 ppm (vs.₂  280 
ppm pre-industrial). Use this to estimate ECS, accounting for ice sheet albedo feedback 
(additional -3.5 W/m² forcing during LGM).

(o) Tipping point analysis. Consider a simplified model where the ice-albedo feedback becomes 
unstable if T > Tcrit = 2.5°C. Model this as a regime change where λalbedo increases from 
+0.4 to +1.2 W/m²/K when T > Tcrit. Calculate the new equilibrium temperature under F = 
4 W/m² forcing and discuss implications for financial risk assessment.
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Chapter 2: Financial Mathematics for Climate Risk

2.1 Principles of Asset Valuation: The Discounted Cash Flow (DCF) Model

The cornerstone of modern finance is the principle that the value of an asset is the present value of
its expected future cash flows. The Discounted Cash Flow (DCF) model is the canonical 
mathematical formulation of this principle.

Definition 2.1 (Standard DCF Model): The value of an asset (V ) at time t=0 is the sum of all ₀
future expected cash flows (CFt) from t=1 to T, discounted back to the present at a specified 
discount rate (r):

V 0=∑
t=1

T E [C F t]
¿¿ ¿

Where: - E[CFt] is the expected cash flow in period t - r is the discount rate, reflecting the time 
value of money and the riskiness of the cash flows - t is the time period

For perpetual cash flows (T  ), the formula simplifies to a perpetuity or growing perpetuity → ∞

model, depending on the assumptions about cash flow growth.

Corollary 2.1 (Perpetuity Formula): For constant perpetual cash flows CF:

V 0=
CF
r

(Eq. 2.2)

Corollary 2.2 (Growing Perpetuity Formula): For cash flows growing at constant rate g < r:

V 0=
C F1

r−g
(Eq. 2.3)

2.2 Climate-Adjusted Discounted Cash Flow Model

Theorem 2.1 (Climate-Adjusted DCF)

Statement: The value of an asset subject to climate risk is the present value of its expected 
future cash flows, adjusted by a climate damage function D(Tt) that quantifies the fractional 
reduction in cash flows due to the physical impacts of climate change at time t.



V 0=∑
t=1

T E [C F t]⋅(1−D(T t))
¿¿ ¿

Where: - D(Tt) is the climate damage function, which maps the projected temperature anomaly (Tt) 
at time t to a fractional economic loss (0  D(T≤ t)  1) - r≤ c is the climate-adjusted discount rate, 
which may include a premium for climate-related risks

Proof:

• Let CFt be the baseline expected cash flow at time t in a world without climate change.

• Let Tt be the projected global mean temperature anomaly at time t, derived from a physical 
climate model as described in Chapter 1.

• Let D(Tt) be a continuous, non-decreasing function representing the fractional damage to 
economic output caused by the temperature anomaly Tt. The existence of such functions is 
empirically supported [1].

• The climate-impacted cash flow at time t, CF’t, is the baseline cash flow reduced by the 
climate damage:

CF 't=C F t−C F t⋅D(T t)=C F t⋅(1−D(T t))

• The expected value of the climate-impacted cash flow is:

E [CF ' t]=E [C Ft⋅(1−D(T t))]

 Assuming the damage function is deterministic for a given temperature path (or taking 
expectations over both CF and T):

E [CF ' t]=E [C Ft ]⋅(1−E [D(T t )])

 For notational simplicity, we write D(Tt) to represent E[D(Tt)].

• The value of the asset is the sum of the present values of these climate-impacted cash flows, 
discounted at a climate-adjusted rate rc:

V 0=∑
t=1

T E [CF ' t]
¿ ¿ ¿



This completes the proof. ∎

Corollary 2.3 (Climate Impact on Asset Value): The fractional reduction in asset value due to 
climate change is:

V 0
baseline−V 0

climate

V 0
baseline =1−∑

t=1

T C F t(1−D(T t))
¿¿ ¿¿

2.3 Financial Risk Metrics

To quantify the potential losses from climate change, we employ standard financial risk metrics, 
adapted for this context.

2.3.1 Value-at-Risk (VaR)

Definition 2.2 (Value-at-Risk): Value-at-Risk (VaR) is the maximum potential loss on a portfolio 
over a given time horizon within a given confidence level (c). Formally, for a loss L, VaRc is 
the value such that:

P(L>Va Rc )=1−c (Eq. 2.6)

Equivalently:

P(L≤Va Rc )=c

If the portfolio losses are normally distributed with mean  and standard deviation , the VaR can μ σ

be calculated directly:

Va Rc=μ+σ⋅Zc (Eq. 2.7)

where Zc is the c-quantile of the standard normal distribution.

Common confidence levels: - 95%: Z0.95 = 1.645 - 99%: Z0.99 = 2.326 - 99.9%: Z0.999 = 3.090

2.3.2 Expected Shortfall (ES)

Definition 2.3 (Expected Shortfall): Expected Shortfall, also known as Conditional VaR (CVaR), 
measures the expected loss given that the loss exceeds the VaR. It provides a measure of the 
magnitude of tail losses.



ESc=E [L ∣ L>VaR c ](Eq. 2.8)

For a normally distributed loss, the ES is given by:

ESc=μ+σ⋅
ϕ(Zc)
1−c

(Eq. 2.9)

where (z) is the probability density function (PDF) of the standard normal distribution:φ

ϕ(z)= 1
√2π

e−z 2/2

2.4 The Term Structure of Climate Risk

The discount rate used in valuation should, in theory, account for the systematic risks associated 
with climate change. This can be modeled by incorporating a time-varying climate risk premium 
into the discount rate.

The climate-adjusted discount rate, rc(t), can be modeled as:

rc (t )=rf+ β⋅MRP+r pclimate (t) (Eq. 2.10)

Where: - rf is the risk-free rate -  is the asset beta (systematic market risk) - MRP is the market β

risk premium - rpclimate(t) is the climate risk premium at time t

Theorem 2.2 (Climate Risk Premium): The climate risk premium can be derived from the 
covariance of asset returns with climate damages:

r pclimate=
Cov (Ri , D)
Var (Rm)

⋅MRP(Eq. 2.11)

where Ri is the asset return, D is climate damage, and Rm is market return.

Proof: (Sketch)

• From CAPM, the required return on asset i is: ri = rf + βi · MRP

• Climate risk introduces an additional systematic factor. Using multi-factor model:

ri=rf+βmarket⋅MRP+βclimate⋅CRP



• The climate beta is:

βclimate=
Cov (Ri , D)
Var (D)

• The climate risk premium (CRP) is proportional to market risk premium by the ratio of climate
risk to market risk:

CRP=MRP⋅ Var (D)
Var (Rm)

• Combining: rpclimate = βclimate · CRP yields Eq. 2.11. ∎

2.5 Worked Examples

Example 2.1: Climate-Adjusted DCF Calculation

Problem: An asset is expected to generate a perpetual cash flow of $100 per year. The discount 
rate is 8%. A climate model projects that damages will be 5% of cash flows in perpetuity. 
Calculate the asset value with and without climate impacts.

Solution:

Without Climate Impacts: Using the perpetuity formula (Eq. 2.2):

V 0=
CF
r

= 100
0.08

=$1,250

With Climate Impacts: The climate-adjusted cash flow is:

CF '=CF⋅(1−D)=100⋅(1−0.05)=$95

V 0
climate= 95

0.08
=$1,187.50

Climate Impact:

Value loss=1,250−1,187.50=$62.50

Percentage loss=62.50
1,250

=5%

The climate impact causes a valuation loss of $62.50, or 5%. ∎



Example 2.2: Calculating Climate VaR

Problem: A portfolio’s value is projected to be impacted by climate change. A Monte Carlo 
simulation (see Chapter 5) of 10,000 scenarios yields a distribution of climate-related losses with a 
mean ( ) of $50 million and a standard deviation ( ) of $150 million. Assuming a normal μ σ

distribution, calculate the 99% VaR.

Solution:

• The confidence level c = 0.99
• The Z-score corresponding to 99% confidence is Z0.99 = 2.326
• Calculate the VaR using Eq. 2.7:

Va R99 %=μ+σ ⋅Zc=50+150⋅2.326=50+348.9=$ 398.9  million

This means there is a 1% chance that the portfolio’s climate-related losses will exceed $398.9 
million. ∎

Example 2.3: Time-Varying Climate Damages 

Problem: An asset generates cash flows of $1,000 per year for 30 years. Climate damages are 
projected to increase linearly from 0% in year 1 to 15% in year 30. The discount rate is 6%. 
Calculate the present value with climate impacts.

Solution:

The damage function is:

D(t )=0.15⋅ t
30

=0.005 t

The climate-adjusted cash flow in year t is:

CF 't=1,000⋅(1−0.005 t)



The present value is:

V 0=∑
t=1

30 1,000(1−0.005 t)
¿¿ ¿

Separating terms:

V 0=1,000∑
t=1

30 1
¿¿ ¿

The first sum is a standard annuity:

∑
t=1

30 1
¿¿ ¿

The second sum requires the formula: ∑
t=1

n t
¿¿ ¿

∑
t=1

30 t
¿¿ ¿

Therefore:

V 0=1,000⋅13.765−5⋅142.35=13,765−711.75=$13,053.25

Baseline value (no climate damage):

V 0
baseline=1,000⋅ 13.765=$13,765

Climate impact:

Value loss=13,765−13,053.25=$711.75

Percentage loss=711.75
13,765

=5.17 %

Despite damages reaching 15% by year 30, the present value loss is only 5.17% due to 
discounting. ∎



Example 2.4: Expected Shortfall Calculation 

Problem: For the portfolio in Example 2.2, calculate the 99% Expected Shortfall (ES).

Solution:

Given: -  = $50 million -  = $150 million - c = 0.99 - Zμ σ 0.99 = 2.326

Using Eq. 2.9:

ES99 %=μ+σ ⋅
ϕ(Zc)
1−c

Calculate (2.326):φ

ϕ(2.326)= 1
√2π

e−¿ ¿

Therefore:

ES99 %=50+150⋅ 0.0267
0.01

=50+150⋅2.67=50+400.5=$ 450.5  million

Interpretation: Given that losses exceed the 99% VaR ($398.9M), the expected loss is $450.5M. 
The difference ($51.6M) represents the expected excess loss in the worst 1% of scenarios. ∎

Example 2.5: Growing Perpetuity with Climate Damages 

Problem: An asset generates cash flows of $1,000 next year, growing at 3% per year. The discount
rate is 8%. Climate damages are 2% of cash flows in perpetuity. Calculate the climate-adjusted 
value.

Solution:

Without climate damages: Using Eq. 2.3:

V 0
baseline=

C F1

r−g
= 1,000

0.08−0.03
=1,000

0.05
=$20,000

With climate damages: The climate-adjusted cash flow is:



CF '1=1,000⋅(1−0.02)=$980

V 0
climate= 980

0.08−0.03
= 980

0.05
=$19,600

Climate impact:

Value loss=20,000−19,600=$ 400

Percentage loss= 400
20,000

=2%

The percentage value loss equals the damage percentage for perpetual constant damages. ∎

Example 2.6: Climate Risk Premium Estimation 

Problem: An equity portfolio has the following characteristics: - Market beta (βmarket) = 1.2 - 
Correlation with climate damages (ρR,D) = 0.3 - Volatility of returns (σR) = 20% - Volatility of 
climate damages (σD) = 15% - Market risk premium (MRP) = 7% - Market volatility (σm) = 
18%

Calculate the climate risk premium.

Solution:

The covariance of returns with climate damages is:

Cov (R ,D)= ρR,D⋅ σR⋅ σD=0.3⋅0.20⋅0.15=0.009

The variance of market returns is:

Var (Rm)=σm
2 =¿

Using Eq. 2.11:

r pclimate=
Cov (R , D)
Var (Rm)

⋅MRP= 0.009
0.0324

⋅0.07=0.278⋅0.07=0.0194=1.94 %

The total required return is:



rc=r f+βmarket⋅MRP+r pclimate

Assuming rf = 3%:

rc=0.03+1.2⋅ 0.07+0.0194=0.03+0.084+0.0194=13.34 %

The climate risk premium adds 194 basis points to the required return. ∎

Example 2.7: Multi-Period DCF with Scenario Analysis 

Problem: A project generates cash flows of $500, $600, $700, $800, $900 over 5 years. Analyze 
three climate scenarios: - Base case: No damages (probability 40%) - Moderate: 10% damage 
starting year 3 (probability 45%) - Severe: 25% damage starting year 2 (probability 15%)

Discount rate is 8%. Calculate the expected NPV.

Solution:

Base case NPV:

NPV base=∑
t=1

5 C Ft

¿¿ ¿

¿462.96+514.40+555.87+588.07+612.52=$2,733.82

Moderate case NPV: Cash flows: $500, $600, $630 (=700×0.9), $720 (=800×0.9), $810 
(=900×0.9)

NPV moderate=462.96+514.40+500.28+529.26+551.27=$2,558.17

Severe case NPV: Cash flows: $500, $450 (=600×0.75), $525 (=700×0.75), $600 (=800×0.75), 
$675 (=900×0.75)

NPV severe=462.96+385.80+416.90+441.05+459.39=$2,166.10

Expected NPV:

E [NPV ]=0.40⋅2,733.82+0.45⋅2,558.17+0.15⋅2,166.10



¿1,093.53+1,151.18+324.92=$2,569.63

Climate impact:

Value loss=2,733.82−2,569.63=$164.19

Percentage loss= 164.19
2,733.82

=6.0 %

The expected climate impact reduces NPV by 6.0%. ∎

Example 2.8: WACC Adjustment for Climate Risk 

Problem: A company has: - Cost of equity (re) = 12% - Cost of debt (rd) = 5% - Tax rate ( ) =τ

25% - Debt-to-equity ratio (D/E) = 0.5

Climate risk analysis suggests adding a 150 bp climate risk premium to the cost of equity. 
Calculate the baseline and climate-adjusted WACC.

Solution:

The weights are:

w e=
E

D+E
= 1

1+0.5
=0.667

wd=
D

D+E
=0.5

1.5
=0.333

Baseline WACC:

WACC=we⋅re+wd⋅ rd⋅(1−τ )

¿0.667⋅0.12+0.333⋅0.05⋅0.75

¿0.0800+0.0125=0.0925=9.25 %

Climate-adjusted WACC:

re
climate=0.12+0.015=0.135=13.5 %



WACC climate=0.667⋅0.135+0.333⋅0.05⋅0.75

¿0.0900+0.0125=0.1025=10.25 %

Impact on valuation: For a perpetual cash flow of $100M:

V baseline=
100

0.0925
=$1,081M

V climate=
100

0.1025
=$ 976M

Value loss=1,081−976
1,081

=9.7 %

A 100 bp increase in WACC reduces firm value by 9.7%. ∎

2.6 Supplementary Problems

Basic Problems (1-6)
• An asset is expected to generate $1,000 in cash flow next year, growing at 2% in perpetuity. 

The discount rate is 10%. Climate damages are projected to reduce cash flows by 3% 
permanently. Calculate the percentage reduction in the asset’s value due to climate change.

• For a normally distributed loss with mean $100M and standard deviation $50M, calculate the 
95% VaR and compare it to the 99% VaR.

• Prove that for a given asset, if the climate risk premium (rpclimate) increases, the asset’s value 
will decrease. Use the perpetuity formula to demonstrate.

• A 10-year bond pays annual coupons of $50 and has a face value of $1,000. If climate risk 
adds 50 bp to the discount rate (from 5% to 5.5%), calculate the change in bond value.

• Calculate the 95% Expected Shortfall for a loss distribution with  = $20M and  = $30M.μ σ

• An asset has cash flows of $100, $110, $121 over 3 years (growing at 10%). Climate 
damages are 5% in all years. Discount rate is 8%. Calculate the climate-adjusted NPV.



Intermediate Problems (7-12)

7. Derive the formula for the climate-adjusted growing perpetuity: V 0=
C F1(1−D)

r−g
 starting from 

first principles.

8. A portfolio has 60% allocation to equities (  = 1.3) and 40% to bonds (  = 0.2). If climate β β

risk adds a premium of 200 bp to equities and 50 bp to bonds, calculate the portfolio’s 
climate risk premium.

9. Show that for small damages D and small growth rate g, the percentage value loss in a 
growing perpetuity approximately equals D. (Hint: Use Taylor expansion.)

10. Calculate the climate beta for an asset with:

9. Correlation with climate damages:  = 0.4ρ

10. Asset volatility: σi = 25%
11. Climate damage volatility: σD = 20%
12. Market volatility: σm = 18%

11. A project has uncertain cash flows: $500 ± $100 (uniform distribution) per year for 5 years. 
Climate damages are 10% ± 5% (uniform). Discount rate is 7%. Use Monte Carlo (1,000 
simulations) to estimate the expected NPV and 90% confidence interval.

12. Prove that ESc  VaR≥ c for any loss distribution. Under what conditions does equality hold?

Advanced Problems (13-18)
13. Climate-adjusted CAPM derivation: Derive Equation 2.11 rigorously using the multi-factor 

asset pricing framework. Show all steps from the basic CAPM to the climate-augmented 
model.

14. Time-varying climate risk premium: Model rpclimate(t) as an increasing function of 
temperature: rp(t) = ·T(t)². Given T(t) = 1.0 + 0.02t (°C) and  = 0.005, calculate the α α

present value of a perpetual cash flow of $100 starting in year 10, using time-varying 
discount rates.



15. Non-linear damage functions: An asset generates $1,000/year for 20 years. Damages follow 
D(T) = 0.002T². Temperature increases linearly from 1.2°C to 3.0°C over 20 years. Discount 
rate is 6%. Calculate the climate-adjusted NPV.

16. Portfolio optimization with climate risk: An investor allocates between two assets:

13. Asset A: E[R] = 10%,  = 15%, climate beta = 0.5σ

14. Asset B: E[R] = 8%,  = 10%, climate beta = 0.1σ

15. Correlation: ρAB = 0.3
16. Climate risk premium: 2%

 Find the minimum variance portfolio and the tangency portfolio (assuming rf = 3%).

17. Stress testing: A bank’s loan portfolio has expected losses of $50M (  = $100M) under σ

baseline climate. Under RCP8.5, damages increase by 50% and volatility doubles. Calculate 
the change in 99.9% VaR and ES.

18. Real options under climate uncertainty: A mining project requires $500M investment and 
generates $80M/year for 20 years. The company has the option to abandon after year 10 for 
salvage value of $200M. Climate damages are uncertain: 5% (prob 0.6) or 20% (prob 0.4) 
starting year 5. Discount rate is 10%. Should the company invest? What is the value of the 
abandonment option?
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Chapter 3: Economic Damage Functions

3.1 Linking Temperature to Economic Output

To translate physical climate change into financial impact, we must establish a mathematical link 
between climate variables and economic outcomes. The primary tool for this is the economic 
damage function, which relates changes in climate variables, most commonly temperature, to 
changes in economic output (e.g., Gross Domestic Product - GDP).

Definition 3.1 (Climate Damage Function): A climate damage function, D(T), is a mathematical 
expression that quantifies the fractional loss in economic output as a function of the global mean 
temperature anomaly, T.

GDPimpacted=GDPbaseline⋅(1−D (T ))(Eq. 3.1)

These functions are a critical component of Integrated Assessment Models (IAMs) and are essential
for estimating the social cost of carbon and for valuing assets under different climate scenarios.

3.2 The Burke-Hsiang-Miguel Non-Linear Model

A significant body of recent econometric research has demonstrated that the relationship between 
temperature and economic productivity is fundamentally non-linear. The work by Burke, Hsiang, 
and Miguel (2015) provides a globally generalizable, empirically-derived functional form for this 
relationship [1].

3.2.1 Model Specification

The model specifies the growth rate of economic output for a country i in year t as a quadratic 
function of temperature:

Δ y¿=β1T ¿+β2T¿
2+γ P¿+μ P¿

2+αi+δt+ε¿ (Eq. 3.2)

Where: - Δ y¿ is the first difference of the natural log of GDP per capita (i.e., the growth rate) - T ¿ 
is the annual average temperature - P¿ represents precipitation variables - α i are country-specific 



fixed effects - δ t are year-specific fixed effects - β1, β2 are the key coefficients capturing the non-
linear temperature effect

Important Note on Parameters: The original BHM (2015) paper does not report simple β1 and β2 
coefficients because the model includes country and year fixed effects. The relationship is estimated 
from panel data regression. For illustrative purposes in this chapter, we use simplified coefficients 
that approximate the marginal effects reported in their Figure 2. For rigorous financial modeling, 
practitioners should use the full BHM specification from their replication data [1].

Illustrative Simplified Coefficients (for pedagogical use only): - β1≈0.0127 (positive effect of 
temperature on growth at low temperatures) - β2≈−0.0005 (negative quadratic term, creating 
inverted-U shape)

Theorem 3.1 (Optimal Productivity Temperature)

Statement: Given the quadratic relationship for economic growth specified by Burke, Hsiang, and 
Miguel, there exists an optimal temperature, T opt, at which economic productivity is maximized. 
This optimum is given by:

T opt=
−β1

2 β2
(Eq. 3.3)

Proof:

To find the temperature that maximizes the economic growth rate (Δ y¿), we take the first derivative
of the growth equation with respect to temperature (T ¿) and set it to zero:

d (Δ y¿)
d T¿

= d
d T¿

(β1T¿+ β2T¿
2+…)=β1+2 β2T ¿

Setting the derivative to zero to find the extremum:

0=β1+2 β2T ¿

−β1=2 β2T ¿

T ¿=
−β1

2 β2



To confirm this is a maximum, we check the second derivative:

d2(Δ y¿)
dT ¿

2 =2 β2

Empirical estimates from Burke, Hsiang, and Miguel find that β1>0 and β2<0, which means the 
second derivative is negative. Therefore, the function is concave, and the derived temperature T opt is
a maximum. ∎

Empirical analysis places this optimal temperature at approximately 13°C [1].

3.2.2 Marginal Effects

The marginal effect of temperature on growth at any temperature T is:

ME (T )=β1+2 β2T (Eq. 3.4)

At the optimal temperature (T = 13°C), ME(13) = 0. For T > 13°C, ME(T) < 0 (warming reduces 
growth). For T < 13°C, ME(T) > 0 (warming increases growth).

3.3 Integrated Assessment Models (IAMs): The DICE Model

Traditional Integrated Assessment Models, such as the Dynamic Integrated Climate-Economy 
(DICE) model developed by William Nordhaus, often use a simpler, calibrated damage function. 
The DICE model typically employs a quadratic function of the temperature anomaly.

DICE Model Damage Function:

D(T t)=
π1T t+π 2T t

2

1+π 1T t+π2T t
2 (Eq. 3.5)

For the simplified version often used in practice:

D(T t)=π1T t+π2T t
2(Eq. 3.5a)

Where: - D(T t) is the fractional loss of GDP - T t is the global mean temperature increase above 
pre-industrial levels (in °C) - π1 and π2 are calibrated coefficients

In the DICE-2016R2 model [2]: - π1=0 (no linear term) - π2=0.00236



This implies that damages are zero at T=0 and increase quadratically with temperature. This 
formulation does not include an optimal temperature; any warming causes damage.

Table 3.1: DICE Model Damage Estimates

Temperature Anomaly (°C)
Damage (% of 
GDP)

Cumulative Effect Over 50 
Years

1.0 0.24% ~12%
2.0 0.94% ~38%
3.0 2.12% ~67%
4.0 3.77% ~91%
5.0 5.90% ~115%

Source: Nordhaus (2017) [2].

3.4 Sectoral Damage Functions

Aggregate damage functions can be decomposed into sector-specific impacts:

Dtotal(T )=∑
i
w i⋅Di(T )(Eq. 3.6)

where w i is the weight (GDP share) of sector i.

Key Sectors: 1. Agriculture: Dag(T )=α agT +βagT
2 2. Infrastructure: Dinfra(T )=γ⋅P(extremeevents∨T )

3. Health: Dhealth(T )=δ⋅mortality(T )+ϵ⋅morbidity (T ) 4. Energy:
Denergy(T )=ζ ⋅ coolingdemand (T )−η⋅heatingdemand (T )

3.5 Mathematical Comparison of Damage Functions

Table 3.2: Comparison of Damage Function Approaches

Feature Burke-Hsiang-Miguel (BHM) Model DICE Model
Functional 
Form

Non-linear (quadratic) in temperature levels Non-linear (quadratic) in 
temperature anomaly



Derivation Empirically estimated from historical data Calibrated based on survey of 
expert opinion

Optimal 
Temp.

Yes, at T  13°C. Countries cooler than this ≈
may benefit from initial warming

No. All warming is damaging

Impact Path Affects the growth rate of the economy Affects the level of economic 
output

Long-term 
Effect

Compounds over time (growth effect) Constant percentage loss (level
effect)

Theorem 3.2 (Growth vs. Level Effects)

Statement: A damage function that affects the growth rate leads to exponentially larger long-term 
damages compared to one that affects the level of output.

Proof:

Let g0 be the baseline growth rate and d be the constant damage to growth rate.

Level effect (DICE-type):

GDPt
level=GDP0 ¿

Growth effect (BHM-type):

GDPt
growth=GDP0 ¿

The ratio of damages is:

GDP0 ¿¿

Simplifying:

¿¿¿

As t→∞, if d<g0, the numerator grows exponentially while the denominator grows linearly in d , 
so the ratio →∞. ∎



This demonstrates that growth effects compound dramatically over time.

3.6 Worked Examples

Example 3.1: Calculating GDP Impact with the BHM Model

Problem: A country has a current average temperature of 25°C. Climate models project a 2°C 
warming. Using the illustrative BHM model coefficients (β1=0.0127, β2=−0.0005), calculate the 
percentage change in the economic growth rate.

Solution:

The change in growth rate is the difference between the growth function evaluated at the new and 
old temperatures.

ΔGrowth=(β1T new+β2T new
2 )−(β1T old+β2T old

2 )

where T old=25 °C and T new=27 ° C.

Calculate growth effect at T old:

Effec t old=0.0127(25)−0.0005(252)=0.3175−0.3125=0.0050

Calculate growth effect at T new:

Effec t new=0.0127 (27)−0.0005(272)=0.3429−0.3645=−0.0216

Calculate the change in the growth rate:

ΔGrowth=−0.0216−0.0050=−0.0266

Answer: The economic growth rate is projected to decrease by 2.66 percentage points. For a 
country with baseline growth of 3%, this would reduce it to 0.34%, a dramatic impact. ∎

Example 3.2: Comparing BHM and DICE Damages

Problem: Calculate the percentage GDP loss for a 3°C temperature increase using both the DICE-
2016R2 damage function and by approximating the BHM impact.



Solution:

DICE Approach:

Using D(T )=π2T
2 with π2=0.00236:

Damage=0.00236×¿

Answer (DICE): A 2.12% loss in the level of GDP.

BHM Approach (Illustrative):

Assume a country is at the optimal temperature of 13°C and warms to 16°C. The change in the 
annual growth rate is:

ΔGrowth=(β1(16)+ β2(162))−( β1(13)+β2(132))

¿(0.0127×16−0.0005×256)−(0.0127×13−0.0005×169)

¿(0.2032−0.128)−(0.1651−0.0845)

¿0.0752−0.0806=−0.0054

This is a 0.54% reduction in the annual growth rate.

Over 50 years, the cumulative effect is:

GDP50=GDP0¿

If baseline growth g=0.02 (2%), then:

GDP50
baseline

GD P50
climate =¿¿

Answer (BHM): GDP would be 31.2% lower than baseline after 50 years, compared to only 
2.12% in the DICE model. This illustrates the dramatic difference between growth and level effects.
∎



Example 3.3: Optimal Temperature Calculation 

Problem: Using the illustrative BHM coefficients, calculate the optimal temperature for economic 
productivity and verify it is a maximum.

Solution:

Using Eq. 3.3:

T opt=
−β1

2 β2
= −0.0127

2(−0.0005)
=−0.0127

−0.001
=12.7 ° C

Verification that this is a maximum:

The second derivative is:

d2(Δy )
d T 2 =2 β2=2(−0.0005)=−0.001<0

Since the second derivative is negative, the function is concave down, confirming this is a 
maximum.

Marginal effect at T = 12.7°C:

ME (12.7)=0.0127+2(−0.0005)(12.7)=0.0127−0.0127=0

Answer: The optimal temperature is 12.7°C (approximately 13°C), which matches the empirical 
finding of Burke et al. (2015). At this temperature, the marginal effect of additional warming is 
zero. ∎

Example 3.4: Sectoral Damage Aggregation 

Problem: An economy has three sectors with the following characteristics:

Sector
GDP 
Share

Damage Function at 
T=3°C

Agriculture 15% Dag(3)=0.08 (8%)



Manufacturing 45% Dmfg(3)=0.02 (2%)
Services 40% Dsvc (3)=0.01 (1%)

Calculate the aggregate damage to GDP at T = 3°C.

Solution:

Using Eq. 3.6:

Dtotal(3)=∑
i
wi⋅Di(3)

¿0.15×0.08+0.45×0.02+0.40×0.01

¿0.012+0.009+0.004

¿0.025=2.5 %

Interpretation: Although agriculture faces 8% damages, its smaller share (15%) means the aggregate
damage is only 2.5%. This demonstrates the importance of sectoral composition in determining 
overall climate vulnerability.

Answer: The aggregate damage to GDP at T = 3°C is 2.5%. ∎

Example 3.5: Adaptation Cost-Benefit Analysis 

Problem: A country faces projected climate damages of 5% of GDP (D = 0.05) at T = 4°C. An 
adaptation investment of 1% of GDP can reduce damages to 3% (D = 0.03). The country’s GDP is
$500 billion, and the discount rate is 5%. The adaptation investment must be made now, while 
benefits accrue over 30 years. Should the country invest in adaptation?

Solution:

Cost of adaptation:

Cadapt=0.01×$500 B=$5 B

Annual benefit (damage reduction):



Bannual=(0.05−0.03)×$500 B=0.02×$500B=$10B

Present value of benefits over 30 years:

PV benefits=Bannual×1−¿¿

¿ $10B×1−¿¿

¿ $10B× 1−0.2314
0.05

¿ $10B×15.372=$153.72B

Net present value:

NPV=PV benefits−Cadapt=$153.72B−$5B=$ 148.72B

Benefit-cost ratio:

BCR=
PV benefits

Cadapt
=$153.72 B

$5 B
=30.7

Answer: Yes, the country should invest in adaptation. The NPV is $148.72 billion with a benefit-
cost ratio of 30.7:1, indicating a highly favorable investment. ∎

Example 3.6: Tipping Point Modeling 

Problem: A damage function includes a tipping point at T = 2.5°C, beyond which damages increase
sharply:

D(T )=¿

Calculate damages at T = 2°C, T = 2.5°C, and T = 4°C.

Solution:

At T = 2°C (below tipping point):

D(2)=0.002×¿



At T = 2.5°C (at tipping point):

D(2.5)=0.002× ¿

At T = 4°C (beyond tipping point):

D(4)=0.002 ¿

¿0.0125+0.01 ¿

¿0.0125+0.01×2.25

¿0.0125+0.0225=0.035=3.5 %

Comparison: Without the tipping point, damages at T = 4°C would be:

Dno tipping(4)=0.002× ¿

Answer: Damages are 0.8% at T=2°C, 1.25% at T=2.5°C, and 3.5% at T=4°C. The tipping point 
adds an additional 0.3% damage at T=4°C compared to the smooth function. ∎

Example 3.7: Regional Heterogeneity in Damages 

Problem: Two countries have different baseline temperatures: - Country A: T  = 10°C (cool ₀
climate) - Country B: T  = 20°C (warm climate)₀

Both experience 2°C warming. Using the BHM model, calculate the change in growth rate for each
country.

Solution:

Country A (10°C  12°C):→

Initial effect:

Effec t A(10)=0.0127(10)−0.0005(102)=0.127−0.05=0.077

Final effect:



Effec t A(12)=0.0127 (12)−0.0005(122)=0.1524−0.072=0.0804

Change:

ΔGrowt hA=0.0804−0.077=+0.0034=+0.34 %

Country B (20°C  22°C):→

Initial effect:

Effec tB(20)=0.0127(20)−0.0005 (202)=0.254−0.2=0.054

Final effect:

Effec tB(22)=0.0127 (22)−0.0005(222)=0.2794−0.242=0.0374

Change:

ΔGrowt hB=0.0374−0.054=−0.0166=−1.66 %

Answer: Country A (cool climate) experiences a +0.34% increase in growth rate, while Country B 
(warm climate) suffers a -1.66% decrease. This demonstrates that climate change impacts are highly
heterogeneous, with cool countries potentially benefiting while warm countries suffer. ∎

Example 3.8: Long-term Compounding of Growth Effects 

Problem: A country with baseline GDP of $1 trillion and growth rate of 2% experiences a 
permanent 0.5% reduction in growth rate due to climate change. Calculate the GDP loss after 50 
and 100 years.

Solution:

Baseline GDP trajectory:

GDPt
baseline=GDP0 ¿

Climate-impacted GDP trajectory:



GDPt
climate=GDP0¿

After 50 years:

GDP50
baseline=$1T × ¿

GDP50
climate=$1T ×¿

Los s50=$2.692T−$2.105T=$0.587T

Percentage loss=0.587
2.692

=21.8 %

After 100 years:

GDP100
baseline=$1T × ¿

GDP100
climate=$1T ×¿

Los s100=$7.245T−$ 4.432T=$2.813T

Percentage loss=2.813
7.245

=38.8 %

Answer: After 50 years, GDP is 21.8% lower ($587 billion loss). After 100 years, GDP is 38.8% 
lower ($2.813 trillion loss). This demonstrates the dramatic compounding effect of growth rate 
damages over time. ∎

3.7 Supplementary Problems

Basic Problems (1-5)
• Using the illustrative BHM coefficients (β1=0.0127, β2=−0.0005), calculate the marginal effect

of temperature on growth at T = 15°C, T = 20°C, and T = 25°C. Interpret the results.

• For the DICE-2016R2 model with π2=0.00236, at what temperature anomaly does the GDP 
loss reach 10%? Solve for T.



• A country at T = 18°C experiences 1°C warming. Will its growth rate increase or decrease 
according to the BHM model? Calculate the exact change.

• Calculate the aggregate damage for an economy with two sectors: Agriculture (20% of GDP, 
12% damage at T=4°C) and Services (80% of GDP, 2% damage at T=4°C).

• Verify that the second derivative of the BHM growth function is negative, confirming the 
optimal temperature is a maximum.

Intermediate Problems (6-11)
(f) Derive a formula for the difference in GDP level after N years between a baseline growth rate 

g and a climate-impacted growth rate (g - d), assuming the damage d is constant. Show that 
the ratio diverges exponentially.

(g) A country faces a choice between two adaptation strategies:

17. Strategy A: Invest $10B now, reduce damages from 6% to 3% for 40 years
18. Strategy B: Invest $5B now, reduce damages from 6% to 4% for 40 years

 GDP is $800B, discount rate is 4%. Which strategy has higher NPV?

(h) Prove that for the DICE damage function D(T )=π2T
2, the marginal damage (dD/dT) increases

linearly with temperature. Calculate the marginal damage at T = 2°C and T = 4°C.

(i) A damage function includes regional variation: D(T ,latitude)=α T 2⋅¿ where α=0.002 and
β=0.01. Calculate damages at T = 3°C for latitudes 30°, 45°, and 60°.

(j) Compare the 100-year cumulative GDP loss for:

19. Level effect: D = 0.03 (constant 3% loss)
20. Growth effect: d = 0.003 (0.3% growth reduction)

 Assume baseline GDP = $1T, g = 0.025.

(k) A tipping point model has: D(T )=0.001T 2 for T  3°C, and ≤ D(T )=0.009+0.05(T−3) for T 
> 3°C. Calculate the discontinuity in the derivative at T = 3°C.



Advanced Problems (12-15)
12. Stochastic damage functions: Assume temperature follows T(t) = 1 + 0.02t + 0.3W(t) where 

W(t) is a Wiener process. The damage function is D(T )=0.002T 2. Derive the expected 
damage E[D(T(t))] at t = 50 years. (Hint: Use Itô’s lemma and the fact that E[W²(t)] = t.)

13. Optimal adaptation investment: A country can invest amount I (as fraction of GDP) in 
adaptation, which reduces damages according to: Dadapted (T , I )=D 0(T )⋅e−γI where γ=5. If
D0(T )=0.05 and the investment cost is I, find the optimal I that minimizes total cost (damages
+ investment).

14. Heterogeneous agents: An economy has two regions with populations N  = 100M and N  = ₁ ₂
50M, and per-capita damages d1(T )=0.001T 2 and d2(T )=0.003T2. Derive the aggregate per-
capita damage function d́ (T ) and calculate it at T = 3°C.

15. Non-linear tipping cascades: A system has two tipping points:

21. At T = 2°C: Ice sheet collapse adds 0.01 to damage coefficient
22. At T = 3.5°C: Amazon dieback adds another 0.02

 Model this as: D(T )=π (T )⋅T 2 where π (T ) is a step function. Calculate damages at T = 
1.5°C, 2.5°C, and 4°C. Derive the expected damage if T is uniformly distributed on [2, 4].
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Chapter 4: Stochastic Processes for Climate and Finance

4.1 Introduction to Stochastic Differential Equations (SDEs)

Deterministic models, while useful, do not capture the inherent randomness and uncertainty present 
in both financial markets and climate systems. Stochastic processes, and specifically Stochastic 
Differential Equations (SDEs), provide a rigorous framework for modeling systems that evolve over 
time in a probabilistic manner.

An SDE models the evolution of a variable as the sum of a deterministic drift component and a 
stochastic diffusion component.

Definition 4.1 (General Form of an SDE): A standard one-dimensional SDE for a process X t is 
given by:

d X t=a (t , X t)dt+b(t , X t)dW t (Eq. 4.1)

Where: - X t is the stochastic process - a (t , X t) is the drift function, representing the deterministic 
trend - b (t , X t) is the diffusion function, representing the volatility or magnitude of the random 
fluctuations - dW t is a Wiener process (or Brownian motion), which has the properties: 1. dW t has
a normal distribution with mean 0 and variance dt 2. For any two different time intervals, the 
corresponding increments dW t are independent

Properties of Wiener Process:

Theorem 4.1 (Wiener Process Properties)

A Wiener process W t satisfies: 1. W 0=0 (starts at zero) 2. W t has independent increments 3.
W t−W s∼N (0 , t−s) for t>s 4. W t has continuous paths

Proof: (Standard result from probability theory - see [1] for complete proof)

The key property for stochastic calculus is that ¿ in the mean-square sense, which leads to Itô’s 
calculus.



4.2 Modeling Asset Prices with Geometric Brownian Motion (GBM)

The most common SDE used in finance is the Geometric Brownian Motion (GBM) model for stock
prices. It assumes that the percentage returns of an asset are normally distributed.

Definition 4.2 (Geometric Brownian Motion): The SDE for an asset price St following a GBM is:

d S t=μ S t dt+σ S tdW t (Eq. 4.2)

Where: - μ is the constant drift rate (expected return) - σ is the constant volatility of the asset

This equation states that the change in the stock price (d S t) is composed of a deterministic part 
proportional to the current price (μS t dt) and a stochastic part, also proportional to the current price 
(σ St dW t).

Theorem 4.2 (Solution to GBM)

The solution to the GBM equation (Eq. 4.2) is:

St=S0 exp[(μ−σ2

2 ) t+σW t](Eq. 4.3)

Proof:

Let Y t=ln(S t). We will apply Itô’s Lemma (Theorem 4.3 below) to find the SDE for Y t.

For f (S )=ln (S): - ∂ f∂S=1
S  - 

∂2 f
∂S2=

−1
S2

Applying Itô’s Lemma:

d Y t=[ μS⋅ 1
S
+

1
2
σ 2S2⋅(−1

S2 )]dt+σS⋅ 1
S
dW t

d Y t=(μ− σ2

2 )dt+σdW t

This is a simple Wiener process with drift. Integrating from 0 to t:

Y t−Y 0=(μ−σ 2

2 )t+σ W t



ln (S t)−ln(S0)=(μ− σ2

2 ) t+σ W t

ln ( StS0
)=(μ−σ2

2 ) t+σW t

Exponentiating both sides:

St=S0 exp[(μ−σ2

2 ) t+σW t]
∎

4.3 Itô’s Lemma

Itô’s Lemma is the fundamental theorem of stochastic calculus. It is the stochastic equivalent of the
chain rule and allows us to find the differential of a function of a stochastic process.

Theorem 4.3 (Itô’s Lemma)

Statement: Let X t be a stochastic process that follows the SDE:

d X t=a (t , X t)dt+b(t , X t)dW t

Let f (t , x) be a twice-differentiable function. Then the process Y t=f (t , X t) follows the SDE:

d Y t=¿

Proof Outline:

The proof involves a Taylor series expansion of f (t , X t):

df=∂ f
∂t
dt+ ∂ f

∂x
d X t+

1
2
∂2 f
∂ x2 ¿

The key insight is that in stochastic calculus, we must keep terms up to order dt because: - ¿ 
(higher order infinitesimal) - ¿ (fundamental property of Wiener process) - dt⋅dW t=0 (mixed 
terms vanish)

Substituting d X t=adt+bdW t:



¿

Keeping only terms of order dt :

df=[ ∂ f∂ t +a ∂ f∂x +1
2
b2 ∂2 f
∂ x2 ]dt+b ∂ f∂x dW t

∎

Corollary 4.1 (Itô’s Product Rule):

For two Itô processes X t and Y t:

d (X tY t)=X tdY t+Y t d X t+d X t dY t

where the last term d X td Y t is computed using the multiplication table: - dt⋅dt=0 - dt⋅dW t=0 -
dW t⋅dW t=dt

4.4 Climate-Driven SDEs

The standard GBM model can be extended to incorporate the financial impacts of climate change 
by making the drift and volatility parameters functions of a climate variable, such as temperature (
T t).

Definition 4.3 (Climate-Driven SDE for Asset Prices): A simple formulation for an asset price St 
impacted by climate change is:

d S t=μ (T t)St dt+σ (T t)St dW t (Eq. 4.5)

Where: - μ(T t) is the temperature-dependent drift. This can be directly linked to the economic 
damage functions from Chapter 3. For example, if the BHM model holds, the growth rate μ will be
a quadratic function of temperature:

μ(T )=μ0+β1T +β2T
2

10. σ (T t) is the temperature-dependent volatility. There is evidence that climate change will 
increase economic volatility, making σ an increasing function of T t:

σ (T )=σ0+γT



4.4.1 Ornstein-Uhlenbeck Process for Temperature

Temperature anomalies can be modeled as mean-reverting processes:

Definition 4.4 (Ornstein-Uhlenbeck Process):

d T t=θ (T́−T t)dt+σT dW t (Eq. 4.6)

Where: - θ is the mean-reversion speed - T́  is the long-run mean temperature anomaly - σ T is the 
temperature volatility

Theorem 4.4 (Solution to OU Process)

The solution to the OU process is:

T t=T 0 e
−θt+T́ (1−e−θt)+σT∫

0

t

e−θ (t−s)dW s (Eq. 4.7)

The expected value and variance are:

E [T t]=T0 e
−θt+T́ (1−e−θt )

Var [T t]=
σ T

2

2θ
(1−e−2θt )

As t→∞: E [T t ]→T́  and Var [T t]→
σT

2

2θ
 (stationary distribution).

4.5 Jump-Diffusion Models

GBM assumes continuous price movements. However, financial markets and climate systems can 
experience sudden, large shocks (e.g., a market crash or an extreme weather event). Jump-diffusion 
models extend the SDE framework to include these events.

Definition 4.5 (Merton Jump-Diffusion Model):
d S t
St

=(μ−λk )dt+σd W t+d J t (Eq. 4.8)



Where: - d J t is a compound Poisson process representing the jumps - λ is the jump intensity 
(average number of jumps per unit time) - k=E[eY−1] where Y  is the jump size (often
Y ∼N (μJ , σJ

2))

Theorem 4.5 (Expected Return with Jumps)

For the Merton model, the expected instantaneous return is:

E [d S tSt ]=μdt

The term λk in the drift compensates for the expected jump size, ensuring the expected return 
remains μ.

Proof:

E [d J t ]=E[number of jumps ]× E[ jump size ]= λdt ×k

Therefore:

E [ d S tSt ]=(μ− λk)dt+ λkdt=μdt

∎

4.5.1 Climate-Driven Jump Intensity

In a climate-finance context, the jump intensity λ can be modeled as a function of temperature,
λ (T t), representing the increasing frequency of extreme weather events as the planet warms:

λ (T )=λ0e
αT (Eq. 4.9)

where α>0 captures the exponential increase in extreme events with warming.

4.6 Multi-Dimensional SDEs and Correlation

Real-world applications often require modeling multiple correlated stochastic processes.

Definition 4.6 (Correlated Wiener Processes):



Two Wiener processes W t
(1) and W t

(2) with correlation ρ can be constructed as:

dW t
(1)=d Z t

(1)

dW t
(2 )=ρd Z t

(1)+√1−ρ2d Z t
(2)

where Zt(1) and Zt(2) are independent standard Wiener processes.

Verification:

E [dW t
(1 )dW t

(2 )]=E ¿

✓

4.7 Worked Examples

Example 4.1: Simulating a Climate-Driven Asset Price Path

Problem: An asset’s price follows d S t=μ (T t)St dt+σ St dW t . Let S0=100, σ=0.20. The drift is
μ(T t)=0.08−0.01T t

2. The temperature anomaly T t follows a simple path T t=0.1t . Simulate the 
asset price over one year (t=1) in a single time step.

Solution:

Discretize the SDE:

ΔS ≈ μ(T )SΔt+σS√Δt⋅Z

where Z∼N (0,1).

Let Δt=1. Then T 1=0.1×1=0.1.

Calculate the drift at t=1:

μ(0.1)=0.08−0.01 ¿

Draw a random number from a standard normal distribution. Let Z=−0.5.

Calculate ΔS:

ΔS ≈(0.0799×100×1)+(0.20×100×√1×(−0.5))



¿7.99−10=−2.01

Calculate the new asset price:

S1=S0+ΔS=100−2.01=$97.99

Answer: The simulated asset price after one year is $97.99. ∎

Example 4.2: Applying Itô’s Lemma

Problem: Let an asset price St follow a GBM: d S t=μ S tdt+σ S tdW t. Find the SDE for the process
Y t=ln (S t).

Solution:

Let f (S )=ln (S). The derivatives are:

∂ f
∂S

=1
S
, ∂

2 f
∂S2 =

−1
S2

Apply Itô’s Lemma with a=μS and b=σS:

d Y t=[a ∂ f∂S + 1
2
b2 ∂2 f
∂S2 ]dt+b ∂ f∂S dW t

Substitute the derivatives and functions:

d Y t=¿

Simplify:

d Y t=[μ− 1
2
σ2]dt+σdW t

Answer: The log price follows d Y t=(μ− σ2

2
)dt+σdW t, a Wiener process with constant drift and 

diffusion. ∎



Example 4.3: Solving for Explicit Stock Price Formula 

Problem: Solve the SDE for Y t=ln(S t) from Example 4.2 to find an explicit formula for St in 
terms of S0, μ, σ , t , and W t .

Solution:

From Example 4.2, we have:

d Y t=(μ− σ2

2 )dt+σdW t

This is a simple SDE with constant coefficients. Integrating from 0 to t:

Y t−Y 0=(μ−σ 2

2 )t+σ W t

Since Y t=ln (S t) and Y 0= ln(S0):

ln (S t)− ln (S0)=(μ− σ2

2 ) t+σ W t

ln ( StS0
)=(μ−σ2

2 ) t+σW t

Exponentiating both sides:

St=S0 exp[(μ−σ2

2 ) t+σW t]
Verification: Taking the differential of this expression using Itô’s Lemma recovers the original 
GBM equation.

Answer: The explicit solution is St=S0 exp[(μ− σ2

2
) t+σW t]. ∎

Example 4.4: Expected Value and Variance of GBM 

Problem: For the GBM solution St=S0 exp[(μ−σ2

2
) t+σW t ], calculate E [St ] and Var [S t].



Solution:

Expected Value:

Since W t∼N (0 , t), we have σW t∼ N (0 , σ2 t).

For a log-normal random variable, if X=eY where Y ∼N (m ,v2), then:

E [X ]=em+ v2/ 2

Here, Y=(μ− σ2

2
)t+σW t with: - Mean: m=(μ−σ 2

2
)t - Variance: v2=σ2 t

Therefore:

E [St ]=S0 exp [(μ−σ2

2
)t+ σ

2t
2 ]=S0 e

μt

Variance:

For a log-normal variable, Var [X ]=E[X2]−¿.

E [St
2]=S0

2E [exp(2Y )]=S0
2 exp [2m+2v2 ]

¿ S0
2 exp[2(μ− σ2

2
) t+2σ2 t ]

¿ S0
2 exp [2μt+σ2 t ]

Therefore:

Var [S t ]=S0
2 e2μt+ σ2 t−S0

2 e2 μt=S0
2 e2μt(eσ

2 t−1)

Answer: E [St ]=S0 e
μt and Var [S t ]=S0

2 e2μt (eσ
2 t−1). ∎

Example 4.5: Climate-Driven Volatility 

Problem: Consider a climate-driven SDE where the volatility is a function of temperature:
σ (T t)=0.2+0.05T t . If T t=2° C, what is the new volatility? How would this affect the range of 
possible outcomes for the asset price over one year compared to constant volatility σ=0.2?



Solution:

New volatility:

σ (2)=0.2+0.05×2=0.2+0.1=0.3

Effect on outcomes:

For a GBM with S0=100 and μ=0.08, the standard deviation of ln (S1) is:

Constant volatility (σ=0.2):

Std [ ln (S1)]=0.2√1=0.2

Climate-driven volatility (σ=0.3):

Std [ ln(S1)]=0.3√1=0.3

The 95% confidence interval for ln (S1) is approximately ±1.96×Std.

Constant volatility:

ln (S1)∈¿

¿ [4.605+0.08−0.02±0.392]=[4.665±0.392]

¿ [4.273,5.057 ]

S1∈[e4.273 ,e5.057 ]=[$71.6 , $157.2]

Climate-driven volatility:

ln (S1)∈¿

¿ [4.605+0.08−0.045±0.588]=[4.640±0.588]

¿ [4.052,5.228]

S1∈[e4.052 , e5.228 ]=[$57.5 , $186.0 ]



Answer: The volatility increases from 0.2 to 0.3 (50% increase). This widens the 95% confidence 
interval from [$71.6, $157.2] to [$57.5, $186.0], representing significantly greater uncertainty in 
outcomes. ∎

Example 4.6: Jump-Diffusion with Climate-Driven Jump Intensity 

Problem: In the Merton jump-diffusion model, the baseline jump intensity is λ0=0.1 jumps/year. 
Due to climate change, the intensity increases to λ (T )=λ0 e

0.2T . If temperature anomaly T = 3°C, 
calculate the new jump intensity and the expected number of jumps over 10 years. If the average 
jump size is k=−0.15 (15% drop), how does this affect the expected return term (μ−λk )?

Solution:

New jump intensity at T = 3°C:

λ (3)=0.1×e0.2×3=0.1×e0.6=0.1×1.822=0.1822  jumps/year

Expected number of jumps over 10 years:

E [ jumps ]=λ (3)×10=0.1822×10=1.822  jumps

Effect on expected return:

Baseline (T = 0):

μ− λ0 k=μ−0.1×(−0.15)=μ+0.015

Climate scenario (T = 3°C):

μ− λ(3)k=μ−0.1822×(−0.15)=μ+0.0273

Change in drift:

Δ(drift)=0.0273−0.015=0.0123=1.23 %

Financial Intuition: The jump compensation term λk becomes more negative (since k<0 and λ 
increases), which actually increases the drift. This seems counterintuitive, but it reflects the 



mathematical requirement that the expected return remains μ despite more frequent negative jumps. 
In reality, investors would demand a higher μ (risk premium) to compensate for increased jump 
risk.

Answer: Jump intensity increases from 0.1 to 0.182 jumps/year (82% increase). Expected jumps 
over 10 years: 1.82. The drift term increases by 1.23%, but this is a mathematical artifact—in 
practice, the required return μ would increase to compensate for higher jump risk. ∎

Example 4.7: Ornstein-Uhlenbeck Temperature Process 

Problem: Temperature anomaly follows an OU process: d T t=0.1(2−T t)dt+0.3dW t with T 0=1 °C . 
Calculate the expected temperature and variance at t = 5 years and t = 50 years.

Solution:

From the OU process d T t=θ (T́−T t)dt+σT dW t, we identify: - θ=0.1 - T́=2°C - σ T=0.3 -
T 0=1 °C

Expected value:

E [T t]=T0e
−θt+T́ (1−e−θt )

At t = 5:

E [T 5]=1×e−0.1× 5+2(1−e−0.5)

¿e−0.5+2(1−e−0.5)

¿0.6065+2(0.3935)

¿0.6065+0.787=1.394 ° C

At t = 50:

E [T 50]=1×e−5+2(1−e−5)

¿0.0067+2(0.9933)



¿0.0067+1.9866=1.993 °C≈2 °C

Variance:

Var [T t]=
σ T

2

2θ
(1−e−2θt )

At t = 5:

Var [T5]=¿¿

¿ 0.09
0.2

(1−0.3679)

¿0.45×0.6321=0.284

Std [T5]=√0.284=0.533°C

At t = 50:

Var [T50]=
0.09
0.2

(1−e−10)

¿0.45(1−0.000045)

¿0.45×0.99996=0.450

Std [T50 ]=√0.450=0.671 °C

Answer: At t=5 years: E[T ] = 1.39°C, Std[T ] = 0.53°C. At t=50 years: E[T ]  2.0°C ₅ ₅ ₅₀ ≈
(converged to long-run mean), Std[T ] = 0.67°C (converged to stationary variance). ₅₀ ∎

Example 4.8: Simulating Correlated Asset and Temperature Processes 

Problem: An asset price and temperature are correlated with ρ=0.6. The asset follows
d S t=0.08S tdt+0.25S t dW t

S and temperature follows d T t=0.05dt+0.2dW t
T. Construct the correlated

Wiener processes and simulate one time step (Δt=1) starting from S0=100, T 0=1 °C . Use random 
draws Z1=0.5, Z2=−0.3.

Solution:



Construct correlated Wiener processes:

dW t
S=d Z1

dW t
T=ρd Z1+√1− ρ2d Z2

With ρ=0.6:

dW t
T=0.6d Z1+√1−0.36d Z2=0.6d Z1+0.8d Z2

Simulate asset price:

ΔS=0.08×100×1+0.25×100×√1×0.5

¿8+12.5=20.5

S1=100+20.5=$120.5

Simulate temperature:

ΔT=0.05×1+0.2×√1×(0.6×0.5+0.8×(−0.3))

¿0.05+0.2×(0.3−0.24)

¿0.05+0.2×0.06

¿0.05+0.012=0.062

T 1=1+0.062=1.062 °C

Verification of correlation: The increments are ΔW S=0.5 and ΔW T=0.06. The correlation is:

ρ= E [ΔW S ΔW T ]

√Var [ΔW S]Var [ΔW T ]
=0.6×1

1
=0.6

✓

Answer: After one year: S1=$120.5, T 1=1.062°C. The positive correlation means both tend to 
move together (in this case, both increased). ∎



Example 4.9: Itô’s Product Rule Application 

Problem: Two assets follow GBMs: d S t(1)=μ1St
(1)dt+σ 1St

(1 )dW t
(1) and d S t(2)=μ2St

(2)dt+σ2St
(2)dW t

(2) 
where the Wiener processes are independent. Find the SDE for the product Pt=S t

(1) St
(2 ).

Solution:

Using Itô’s product rule:

d (St
(1)S t

(2))=St
(1)d S t

(2)+St
(2)d St

(1)+d S t
(1)d St

(2)

Calculate each term:

First term:

St
(1 )d S t

(2)=S t
(1) [μ2S t

(2)dt+σ2S t
(2)dW t

(2)]

¿ μ2S t
(1)S t

(2)dt+σ2S t
(1)S t

(2)dW t
(2)

Second term:

St
(2 )d S t

(1)=S t
(2) [μ1S t

(1)dt+σ1S t
(1)dW t

(1)]

¿ μ1S t
(1)S t

(2)dt+σ1S t
(1)S t

(2)dW t
(1)

Third term (quadratic variation):

d S t
(1)d S t

(2)=[ μ1St
(1)dt+σ1St

(1)dW t
(1)][μ2St

(2)dt+σ 2St
(2)dW t

(2)]

Using dt⋅dt=0, dt⋅ dW=0, and dW t
(1)dW t

(2 )=0 (independent):

¿0

Combining all terms:

d Pt=(μ1+μ2)Ptdt +σ 1Pt dW t
(1)+σ2Pt dW t

(2)

Answer: The product follows d Pt=(μ1+μ2)Pt dt+σ 1Pt dW t
(1)+σ2Pt dW t

(2). The drift is the sum of 
individual drifts, and the diffusion has two independent components. ∎



Example 4.10: Calibrating GBM from Historical Data 

Problem: Historical monthly stock prices over 2 years (24 months) show: - Average monthly return:
ŕ=0.008 (0.8%) - Standard deviation of monthly returns: s=0.05 (5%)

Estimate the annual drift μ and volatility σ  parameters for a GBM model.

Solution:

For GBM, the log returns are:

r t=ln ( S t+ΔtS t )∼N [(μ−σ 2

2 )Δt ,σ2 Δt ]
From the data (monthly, so Δt=1/12):

Mean of log returns:

E [rt ]=(μ−σ 2

2 )× 1
12

=ŕ=0.008

Variance of log returns:

Var [rt ]=σ
2× 1

12
=s2=¿

From the variance equation:

σ 2=0.0025×12=0.03

σ=√0.03=0.1732=17.32 %

From the mean equation:

μ−σ 2

2
=0.008×12=0.096

μ=0.096+ 0.03
2

=0.096+0.015=0.111=11.1%

Answer: The calibrated parameters are μ=11.1% (annual drift) and σ=17.32 % (annual volatility). 
∎



4.8 Supplementary Problems

Basic Problems (1-6)
• For a Wiener process W t, calculate E [W 5], Var [W 5], and P(W 5>1).

• An asset follows d S t=0.10S tdt+0.30S t dW t with S0=50. Using the explicit solution formula, 
write the expression for St at any time t.

• Verify that ¿ by showing that E ¿ and Var ¿ (in the limit).

• For the OU process d T t=0.2(1.5−T t)dt+0.25dW t, what is the long-run mean and long-run 
variance?

• In a jump-diffusion model with λ=0.2 jumps/year and average jump size k=−0.10, what is 
the expected number of jumps over 5 years? What is the total expected loss from jumps?

• Two independent Wiener processes W t
(1) and W t

(2) are combined: W t=0.6W t
(1)+0.8W t

(2 ). Show 
that W t is also a Wiener process by verifying Var [W t ]=t .

Intermediate Problems (7-12)
7. Apply Itô’s Lemma to find the SDE for Y t=S t

2 where St follows a GBM: d S t=μ S tdt+σ S tdW t

.

8. Solve the OU process d T t=θ (T́−T t)dt+σT dW t explicitly by using the integrating factor 
method. Verify the solution given in Eq. 4.7.

9. For a GBM with μ=0.12 and σ=0.25, calculate the probability that the stock price doubles (
St=2S0) within 5 years. (Hint: Use the log-normal distribution.)

10. Construct two correlated Wiener processes with ρ=−0.5 using independent standard Wiener 
processes Zt(1) and Zt(2). Verify the correlation.

11. A climate-driven asset has drift μ(T )=0.10−0.02T 2 and volatility σ (T )=0.20+0.03T . If 
temperature increases from 1°C to 3°C, calculate the change in expected return and volatility.



12. For the Merton jump-diffusion model with μ=0.08, σ=0.20, λ=0.15, and jump sizes
Y ∼N (−0.05 ,0.102), calculate the parameter k=E [eY−1] and the compensated drift μ− λk.

Advanced Problems (13-18)
13. Girsanov’s Theorem Application: Under the risk-neutral measure, the drift of a GBM changes 

from μ to r (risk-free rate). Derive the Radon-Nikodym derivative for this measure change and
show how it affects the Wiener process.

14. Multi-dimensional Itô: Two assets follow correlated GBMs with correlation ρ. Derive the SDE
for the portfolio V t=w1St

(1 )+w2S t
(2) and find the portfolio volatility.

15. Variance of OU process: Derive the variance formula Var [T t]=
σ T

2

2θ
(1−e−2θt ) by solving the 

variance differential equation.

16. Jump-diffusion option pricing: For a European call option on an asset following Merton’s 
jump-diffusion model, the price is a weighted sum of Black-Scholes prices. Derive the first 
term of this series (corresponding to zero jumps).

17. Climate tipping point SDE: Model a climate variable with a tipping point using:
d X t=θ(X t)(X crit−X t)dt+σdW t where θ(X)=θ0 for X<X crit and θ(X)=−θ0 for X>X crit. 
Analyze the stability of this system.

18. Calibration with jumps: Given historical data showing both continuous volatility and occasional
large drops, develop a maximum likelihood estimator for the parameters (μ , σ , λ , μJ , σ J) of the 
Merton model.
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Chapter 5: Monte Carlo Simulation for Risk Quantification

5.1 Mathematical Principles of Monte Carlo Methods

Monte Carlo methods are a broad class of computational algorithms that rely on repeated random 
sampling to obtain numerical results. The underlying principle is to use randomness to solve 
problems that might be deterministic in principle but are too complex to solve analytically. The 
core idea is based on the Law of Large Numbers.

Theorem 5.1 (Law of Large Numbers)

Let X1 , X2 ,…, Xn be a sequence of independent and identically distributed (i.i.d.) random variables 

with a finite expected value E [X ]=μ. Then the sample mean, X́ n=
1
n∑i=1

n

X i, converges to the 

expected value μ as n→∞:

lim
n→∞

X́n=μ (almost surely) (Eq. 5.1)

Proof: (Standard result from probability theory - see [1])

Theorem 5.2 (Central Limit Theorem)

Under the same conditions as Theorem 5.1, and assuming finite variance σ 2, the distribution of the 
sample mean converges to a normal distribution:

n(  - )  N(0, ²)   (Eq. 5.2)√ Ȳₙ μ →ᴅ σ

This implies the standard error of the Monte Carlo estimate is:

SE( X́ n)=
σ
√n

(Eq. 5.3)

Corollary 5.1 (Convergence Rate):

The error in a Monte Carlo estimate decreases at rate O(1/√n). To halve the error, we must 
quadruple the number of simulations.



In the context of financial risk, if we can generate a large number of random scenarios (or paths) 
for the evolution of a portfolio’s value under climate change, the average outcome of these 
scenarios will converge to the true expected value. More importantly, the distribution of these 
simulated outcomes can be used to estimate risk metrics like VaR and ES.

5.2 Algorithm for Climate Value-at-Risk (Climate VaR) Calculation

Climate VaR is an estimate of the potential loss in portfolio value due to climate change at a given
confidence level over a specific time horizon. A Monte Carlo approach to calculating Climate VaR 
involves a multi-step process that integrates climate science, economics, and finance.

Algorithm 5.1: Monte Carlo Climate VaR

Objective: To calculate the α -percentile loss on a financial portfolio due to climate change over a 
horizon T .

Step 1: Scenario Generation (Climate Module)

For i=1 to N (where N is the number of simulations):

1a. Sample from the probability distributions of key climate parameters: - Radiative forcing:
F i∼N (μF , σ F

2 ) (e.g., from CMIP6 estimates) - Climate sensitivity parameter: λ i∼N (μλ , σλ
2)

1b. For each sampled set of parameters, generate a future temperature path, T i(t), from t=0 to T . 
This can be done using: - Simplified climate model: T i(t)=F i / λi⋅(1−e−t / τ) - Or by sampling from 
a pre-existing ensemble of GCM runs

Step 2: Impact Calculation (Economic Module)

For each temperature path T i(t):

2a. Apply a stochastic economic damage function, D(T i(t) , ε i), where ε i is a random shock term, to
translate the temperature path into a path of economic impacts (e.g., GDP growth rate shocks):

gi(t)=g0−D(T i(t ), εi)



2b. Propagate these economic impacts through an economic model to generate paths for relevant 
macroeconomic variables (e.g., interest rates, market indices).

Step 3: Valuation (Finance Module)

For each macroeconomic path:

3a. Re-value the assets in the portfolio to determine the terminal portfolio value, V i(T ):

V i(T )=∑
j=1

m

w j⋅S ij (T )

where w j is the weight of asset j and Sij (T ) is its value in scenario i.

3b. Calculate the portfolio loss for the i-th simulation:

Li=V baseline−V i(T )

where V baseline is the expected portfolio value in a world without climate change.

Step 4: Risk Aggregation

4a. Collect the N simulated losses to form a loss distribution, {L1 , L2 ,…, LN }.

4b. Sort the loss distribution in ascending order: L(1)≤ L(2)≤⋯≤L(N ).

4c. The Climate VaR at confidence level α is the value at the ⌈N ⋅α⌉-th position in the sorted 
loss distribution:

VaRα=L(⌈ N⋅α⌉) (Eq. 5.4)

4d. The Expected Shortfall (ES) at confidence level α is:

ESα=
1

N (1−α) ∑
i :Li>VaRα

Li (Eq. 5.5)

5.3 Variance Reduction Techniques

The standard Monte Carlo method has slow convergence (O(1/√n)). Variance reduction techniques 
can significantly improve efficiency.



5.3.1 Antithetic Variates

Definition 5.1 (Antithetic Variates):

For each random draw Z∼N (0,1), also simulate using −Z. This creates negative correlation 
between pairs, reducing variance.

Theorem 5.3 (Variance Reduction from Antithetic Variates):

For a function f  that is monotonic in Z, the variance of the antithetic estimator is:

Var [ f (Z)+ f (−Z)
2 ]≤Var [ f (Z)](Eq. 5.6)

5.3.2 Control Variates

Definition 5.2 (Control Variates):

Use a correlated variable with known expectation to reduce variance. If we want to estimate E [X ] 
and we know E [Y ]:

X̂CV= X́−β (Ý−E[Y ])(Eq. 5.7)

where β is chosen to minimize variance (optimal: β¿=Cov[X ,Y ]/Var [Y ]).

5.3.3 Importance Sampling

Definition 5.3 (Importance Sampling):

Sample from a different distribution g(x ) instead of the target f (x), and reweight:

E f [h(X )]=Eg [h (X )
f (X )
g(X) ](Eq. 5.8)

This is particularly useful for rare events (e.g., extreme climate scenarios).

5.4 Propagating Uncertainty

A key strength of the Monte Carlo framework is its ability to formally propagate uncertainty 
through the entire modeling chain. The uncertainty in the final loss distribution is a composite of 
uncertainties from each stage:



(a) Climate Uncertainty: Uncertainty in radiative forcing, climate sensitivity, and the internal 
variability of the climate system.

(b) Economic Uncertainty: Uncertainty in the parameters of the damage function (e.g., the β 
coefficients in the BHM model) and shocks to economic growth.

(c) Financial Uncertainty: Uncertainty in asset-specific responses to macroeconomic shocks (i.e., 
uncertainty in asset betas).

By sampling from the probability distributions of the parameters at each stage, the Monte Carlo 
simulation produces a final loss distribution that reflects the combined effect of all these underlying 
uncertainties.

5.5 Worked Examples

Example 5.1: Complete Numerical Example (10 Scenarios)

Problem: Let’s perform a simplified 10-scenario Monte Carlo simulation for a single asset.

Given: - Asset: A perpetual claim on a dividend stream. Current value (baseline) = $1000 - 
Climate Model: ΔT=F / λ. We assume F∼N (3.0 ,0.52) W/m² and λ∼N (1.2,0.22) - Damage 
Function: Loss = 0.02×¿. This is a level-impact model for simplicity - Objective: Calculate the 
90% Climate VaR

Solution:

Scenario (i) Sampled F Sampled λ
T = Δ

F/λ
Loss = 
0.02× T²Δ

Asset Value 
(Vi) Loss (Li)

1 3.2 1.1 2.91 16.9% $831.00 $169.00
2 2.8 1.3 2.15 9.2% $908.00 $92.00
3 3.5 1.0 3.50 24.5% $755.00 $245.00
4 2.5 1.4 1.79 6.4% $936.00 $64.00
5 3.8 1.2 3.17 20.1% $799.00 $201.00
6 2.9 1.5 1.93 7.4% $926.00 $74.00



7 3.1 0.9 3.44 23.7% $763.00 $237.00
8 2.2 1.1 2.00 8.0% $920.00 $80.00
9 4.0 1.3 3.08 19.0% $810.00 $190.00
10 3.3 1.0 3.30 21.8% $782.00 $218.00

Risk Aggregation:

• Loss Distribution: {$169, $92, $245, $64, $201, $74, $237, $80, $190, $218}
• Sorted Losses: {$64, $74, $80, $92, $169, $190, $201, $218, $237, $245}
• VaR Calculation: The 90% VaR is the 9th value (N ×α=10×0.9=9) in the sorted list.

Answer: The 90% Climate VaR is $237. There is a 10% chance that the climate-related loss on the
asset will exceed $237. ∎

Example 5.2: Calculating Expected Shortfall 

Problem: From the case study data in Example 5.1, calculate the 90% Expected Shortfall (ES).

Solution:

ES is the average of all losses greater than or equal to the VaR.

From Example 5.1, VaR  = $237.₉₀

Losses  $237: {$237, $245}≥

ES90=
237+245

2
=482

2
=$241

Alternative calculation (more conservative):

Some definitions use losses strictly greater than VaR:

Losses > $237: {$245}

ES90=$245



Answer: The 90% Expected Shortfall is $241 (average of tail losses including VaR) or $245 
(average of losses strictly exceeding VaR). The first definition is more common. ∎

Example 5.3: Sensitivity to Damage Function 

Problem: How would the Climate VaR change if the damage function was D(T )=0.01×T 2 instead 
of 0.02×T 2? Recalculate the loss for scenario 1 and estimate the new 90% VaR.

Solution:

Scenario 1 with new damage function: - ΔT=2.91° C (unchanged) - Loss = 0.01×¿ - Asset Value
= 1000×(1−0.0847)=$915.30 - Loss = $1000 - $915.30 = 84.70

The original loss was $169, so the new loss is approximately half.

Scaling all losses:

Since the damage function is halved, all losses will be approximately halved:

Original sorted losses: {$64, $74, $80, $92, $169, $190, $201, $218, $237, $245}

New sorted losses (approximate): {$32, $37, $40, $46, $84.50, $95, $100.50, $109, $118.50, 
$122.50}

New 90% VaR: Approximately $118.50 (9th value).

Answer: With the halved damage function, the 90% Climate VaR decreases from $237 to 
approximately $118.50, a reduction of 50%. This demonstrates the high sensitivity of risk metrics 
to damage function parameters. ∎

Example 5.4: Convergence Analysis 

Problem: A Monte Carlo simulation estimates E [L]=150 with standard deviation σ=60 using
N=100 scenarios. Calculate the 95% confidence interval for the true mean. How many scenarios 
are needed to reduce the confidence interval width to ±$5?



Solution:

Standard error:

SE= σ
√N

= 60
√100

=60
10

=6

95% confidence interval:

CI=Ĺ±1.96×SE=150±1.96×6=150±11.76=[138.24,161 .76]

Required N for CI width = ±$5:

We need:

1.96× σ
√N

=5

60
√N

= 5
1.96

=2.551

√N= 60
2.551

=23.52

N=¿

Answer: Current 95% CI is [$138.24, $161.76]. To achieve CI width of ±$5, we need 554 
scenarios (5.5× increase). ∎

Example 5.5: Antithetic Variates Application 

Problem: Estimate E [eZ ] where Z∼N (0,1) using (a) standard Monte Carlo with 4 samples, and (b)
antithetic variates with 2 pairs. Use random draws: Z1=0.5, Z2=−1.2.

Solution:

(a) Standard Monte Carlo (4 independent samples):

Suppose we draw: Z1=0.5, Z2=−1.2, Z3=0.8, Z4=−0.3

Ê std=
1
4
(e0.5+e−1.2+e0.8+e−0.3)



¿ 1
4
(1.649+0.301+2.226+0.741)=4.917

4
=1.229

(b) Antithetic variates (2 pairs):

Pair 1: Z1=0.5, −Z1=−0.5 Pair 2: Z2=−1.2, −Z2=1.2

Êant=
1
4
(e0.5+e−0.5+e−1.2+e1.2)

¿ 1
4
(1.649+0.606+0.301+3.320)=5.876

4
=1.469

True value:

For Z∼N (0,1), E [eZ ]=e1/2=e0.5=1.649 (log-normal property).

Comparison: - Standard MC error: ¿1.229−1.649∨¿0.420 - Antithetic error: ¿1.469−1.649∨¿0.180

Answer: Antithetic variates reduced the error by 57% in this example. The variance reduction 
comes from the negative correlation between f (Z ) and f (−Z) when f  is monotonic. ∎

Example 5.6: Importance Sampling for Rare Events 

Problem: Estimate P(L>500) where L=100 eZ and Z∼N (0,1). This is a rare event. Compare 
standard Monte Carlo (1000 samples) with importance sampling using Z∼N (2,1).

Solution:

Event of interest:

L>500⇒100eZ>500⇒eZ>5⇒Z> ln(5)=1.609

Under N (0,1): P(Z>1.609)=1−Φ (1.609)=1−0.9463=0.0537=5.37%

(a) Standard Monte Carlo:

With 1000 samples from N (0,1), we expect about 1000×0.0537=53.7 samples with Z>1.609.

Estimated probability: p̂std=count(Z>1.609)
1000



Standard error: SE=√ p (1−p)
n

=√ 0.0537×0.9463
1000

=0.0071=0.71 %

(b) Importance Sampling from N (2,1):

Sample Z¿∼ N (2,1) and reweight:

p̂ IS=
1
n∑i=1

n

1 (Z i
¿>1.609)×

ϕ(Z i
¿ ;0,1)

ϕ(Z i
¿ ;2,1)

where ϕ(⋅; μ ,σ2) is the normal PDF.

The likelihood ratio is:
ϕ( z;0,1)
ϕ(z;2,1)

=exp ¿

Under N (2,1), P(Z¿>1.609)=1−Φ (1.609−2)=1−Φ(−0.391)=Φ(0.391)=0.652=65.2 %

So we expect about 652 samples in the region of interest (vs. 54 for standard MC).

Answer: Importance sampling dramatically increases the number of samples in the tail region (652 
vs. 54), reducing the standard error by approximately √652/54=3.5 times. For rare event 
estimation, this is a critical improvement. ∎

Example 5.7: Multi-Asset Portfolio VaR 

Problem: A portfolio contains two assets with weights w1=0.6, w2=0.4. Initial values: S1(0)=100,
S2(0)=150. They follow correlated GBMs with μ1=0.08, μ2=0.10, σ 1=0.20, σ 2=0.25, ρ=0.5. 
Calculate the 1-year 95% VaR using 5 Monte Carlo scenarios. Use random draws:
(Z1

(1) , Z2
(1))=(0.5,0 .3), (Z1

(2) , Z2
(2))=(−0.8,1 .2), (Z1

(3) , Z2
(3))=(1.5 ,−0.5), (Z1

(4 ), Z2
(4))=(−1.2 ,−0.9),

(Z1
(5) , Z2

(5))=(0.2,0 .7).

Solution:

Initial portfolio value:

V 0=0.6×100+0.4×150=60+60=$120



Construct correlated Wiener increments:

W 1=Z1

W 2= ρZ1+√1−ρ2Z2=0.5Z1+0.866 Z2

Asset price formula:

Si(1)=Si(0)exp[(μ i−σ i
2

2
)+σ iW i]

Scenario 1: (Z1 , Z2)=(0.5,0.3) - W 1=0.5, W 2=0.5(0.5)+0.866(0.3)=0.25+0.260=0.510 -
S1(1)=100 exp[(0.08−0.02)+0.20(0.5)]=100 exp[0.16]=117.35 -
S2(1)=150 exp[(0.10−0.03125)+0.25(0.510)]=150 exp[0.1963]=182.66 -
V 1=0.6 (117.35)+0.4 (182.66)=70.41+73.06=$143.47 - Loss: 120−143.47=−$23.47 (gain)

Scenario 2: (Z1 , Z2)=(−0.8,1.2) - W 1=−0.8, W 2=0.5(−0.8)+0.866 (1.2)=−0.4+1.039=0.639 -
S1(1)=100 exp[0.06−0.16]=100 exp[−0.10]=90.48 -
S2(1)=150 exp[0.06875+0.1598 ]=150 exp[0.2285]=188.73 -
V 2=0.6(90.48)+0.4 (188.73)=54.29+75.49=$129.78 - Loss: 120−129.78=−$9.78 (gain)

Scenario 3: (Z1 , Z2)=(1.5 ,−0.5) - W 1=1.5, W 2=0.75−0.433=0.317 -
S1(1)=100 exp[0.06+0.30]=143.33 - S2(1)=150 exp[0.06875+0.0793]=173.83 -
V 3=0.6(143.33)+0.4(173.83)=$155.53 - Loss: −$35.53 (gain)

Scenario 4: (Z1 , Z2)=(−1.2,−0.9) - W 1=−1.2, W 2=−0.6−0.779=−1.379 -
S1(1)=100 exp[0.06−0.24]=83.53 - S2(1)=150 exp[0.06875−0.3448]=117.92 -
V 4=0.6(83.53)+0.4 (117.92)=$97.29 - Loss: 120−97.29=$22.71

Scenario 5: (Z1 , Z2)=(0.2,0.7) - W 1=0.2, W 2=0.1+0.606=0.706 -
S1(1)=100 exp[0.06+0.04]=110.52 - S2(1)=150 exp[0.06875+0.1765]=191.87 -
V 5=0.6(110.52)+0.4 (191.87)=$ 143.06 - Loss: −$23.06 (gain)

Sorted losses: {$-35.53, $-23.47, $-23.06, $-9.78, $22.71}

95% VaR: 95th percentile = 5th value = $22.71



Answer: The 1-year 95% VaR is $22.71. Note that 4 out of 5 scenarios resulted in gains, reflecting
the positive expected returns. ∎

Example 5.8: Growth vs. Level Damage Functions 

Problem: Explain why using a damage function that impacts the growth rate of GDP (like the BHM
model) instead of the level would likely result in a higher Climate VaR over a long time horizon. 
Provide a numerical example with a 20-year horizon.

Solution:

Level effect (DICE-type):

GDPt=GDP0 ¿

where d is the constant damage to the level.

Growth effect (BHM-type):

GDPt=GDP0 ¿

where δ is the constant damage to the growth rate.

Numerical Example: - GDP0=$1000 B - Baseline growth: g=0.03 (3%) - Damage: d=0.05 (5% 
level loss) or δ=0.005 (0.5% growth reduction) - Horizon: T=20 years

Level effect:

GDP20
level=1000×¿

¿1000×1.806×0.95=$1715.7B

Loss=1000×1.806−1715.7=1806−1715.7=$ 90.3B

Growth effect:

GDP20
growth=1000×¿



¿1000×1.639=$1639 B

Loss=1806−1639=$167B

Ratio of losses:
167
90.3

=1.85

Answer: The growth effect produces 85% larger losses after 20 years. This is because growth 
effects compound over time: each year’s reduced growth affects the base for all subsequent years. 
For longer horizons (e.g., 50 years), the ratio would be even larger. This explains why Climate 
VaR estimates using BHM-type models are typically much higher than those using DICE-type 
models. ∎

5.6 Supplementary Problems

Basic Problems (1-5)
• For a Monte Carlo simulation with N=400 scenarios and sample standard deviation s=80, 

calculate the standard error of the mean estimate.

• How many scenarios are required to reduce the standard error to 1.0 if the population standard
deviation is σ=50?

• Given sorted losses {$10, $20, $30, $40, $50, $60, $70, $80, $90, $100}, calculate the 80% 
VaR and 80% ES.

• If the damage function coefficient doubles (from 0.01 to 0.02), by what factor does the VaR 
increase (assuming quadratic damage function)?

• Verify that for Z∼N (0,1), the antithetic pair (Z ,−Z ) has correlation -1.



Intermediate Problems (6-10)
(f) A simulation uses 1000 scenarios and estimates VaR  = $500 with 95% confidence interval ₉₅

[$450, $550]. A colleague argues that 10,000 scenarios are needed for regulatory approval. 
Estimate the new confidence interval width.

(g) Implement the control variate method to estimate E [e2Z ] where Z∼N (0,1), using Y=Z as the 
control variate (with known E [Z ]=0). Derive the optimal β¿.

(h) For importance sampling from g(x )=N (μg ,1) to estimate tail probabilities under f (x)=N (0,1)

, derive the optimal μg for estimating P(X>c) where c is large.

(i) A portfolio has 3 assets with weights (0.5, 0.3, 0.2) and individual VaR  values of ($100, ₉₅
$80, $60). Assuming perfect positive correlation, what is the portfolio VaR? What if they are 
independent?

(j) Prove that Expected Shortfall is a coherent risk measure (satisfies monotonicity, sub-additivity, 
positive homogeneity, and translation invariance), while VaR is not (fails sub-additivity).

Advanced Problems (11-15)
(k) Quasi-Monte Carlo: Research and explain how low-discrepancy sequences (e.g., Sobol 

sequences) can achieve faster convergence than standard Monte Carlo. What is the theoretical 
convergence rate?

(l) Nested simulation: For calculating VaR of a portfolio containing options (which themselves 
require Monte Carlo pricing), develop a nested simulation algorithm and analyze its 
computational complexity.

(m) Adaptive sampling: Design an algorithm that dynamically allocates more samples to regions of
the parameter space where the loss function has high variance or where we need more 
precision (e.g., near the VaR threshold).

(n) Kernel density estimation: Instead of using the empirical distribution, fit a kernel density 
estimator to the simulated loss distribution. Derive the formula for VaR and ES under the 
KDE, and discuss the bias-variance tradeoff in bandwidth selection.



(o) Convergence diagnostics: Develop a statistical test to determine whether N scenarios are 
sufficient. Consider using the Kolmogorov-Smirnov test to compare loss distributions from two 
independent simulation runs, or bootstrap methods to estimate the sampling distribution of 
VaR.

References

[1] Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Springer.

[2] Kroese, D. P., Taimre, T., & Botev, Z. I. (2013). Handbook of Monte Carlo Methods. John 
Wiley & Sons.

[3] Asmussen, S., & Glynn, P. W. (2007). Stochastic Simulation: Algorithms and Analysis. 
Springer.

[4] Battiston, S., et al. (2017). “A climate stress-test of the financial system.” Nature Climate 
Change, 7(4), 283-288.

[5] Vermeulen, R., et al. (2021). “The heat is on: A framework for measuring financial stress under
disruptive energy transition scenarios.” Ecological Economics, 190, 107205.



Chapter 6: Partial Differential Equations in Climate Finance

6.1 The Black-Scholes-Merton Equation

Partial Differential Equations (PDEs) are a cornerstone of quantitative finance, primarily used for 
the pricing of derivative securities. The most famous of these is the Black-Scholes-Merton (BSM) 
equation, which provides a theoretical estimate of the price of European-style options.

The BSM equation is derived under a set of idealizing assumptions, including that the underlying 
asset price follows a Geometric Brownian Motion (GBM) with constant drift and volatility. The 
derivation relies on forming a risk-free portfolio by combining the derivative and the underlying 
asset, and arguing that, in the absence of arbitrage opportunities, this portfolio must earn the risk-
free rate of return.

Definition 6.1 (The Black-Scholes-Merton Equation): For a derivative with price V (S , t), where S 
is the price of the underlying asset and t is time, the BSM equation is:

∂V
∂ t

+ 1
2
σ 2S2 ∂2V

∂S2 +rS ∂V
∂ S

−rV=0(Eq. 6.1)

Where: - V  is the price of the derivative - S is the price of the underlying asset - t is time - r is 
the risk-free interest rate - σ is the volatility of the underlying asset

6.2 A Climate-Adjusted Black-Scholes PDE

To incorporate climate risk into derivative pricing, we can adapt the BSM framework. We start by 
replacing the standard GBM with the climate-driven SDE introduced in Chapter 4:

d S t=μ (T t)St dt+σ (T t)St dW t (Eq. 6.2)

Here, the drift (μ) and volatility (σ ) are functions of a temperature process, T t. For this derivation, 
we will assume T t is a deterministic function of time, T (t), based on a given climate scenario.

Theorem 6.1 (The Climate-Adjusted PDE for Derivative Pricing)



Statement: Let V (S , t) be the price of a derivative on an underlying asset S, whose price follows 
the climate-driven SDE above. The price V  must satisfy the following PDE:

∂V
∂ t

+ 1
2
σ ¿

Proof:

• Construct a portfolio, Π , consisting of one derivative, V , and a short position in Δ units of the
underlying asset, S:

Π=V−ΔS

• The change in the value of this portfolio, dΠ , is given by:

dΠ=dV−ΔdS

• Using Itô’s Lemma for V (S , t), where S follows the climate-driven SDE (with drift
a=μ(T (t))S and diffusion b=σ (T (t ))S):

dV=¿

• Substitute dV  and dS into the expression for dΠ :

dΠ=¿

−Δ {μ (T (t))Sdt+σ (T (t))SdW t }

• To make the portfolio risk-free, we must eliminate the stochastic term containing dW t. This is 
achieved by setting:

Δ=∂V
∂ S

• With this choice of Δ, the portfolio becomes instantaneously risk-free, and its dynamics are 
purely deterministic:

dΠ=¿



• In the absence of arbitrage, a risk-free portfolio must earn the risk-free interest rate, r. 
Therefore:

dΠ=rΠdt=r (V−ΔS )dt=r (V−S ∂V
∂S )dt

• Equating the two expressions for dΠ :

¿

• Rearranging the terms yields the Climate-Adjusted PDE:

∂V
∂ t

+ 1
2
σ ¿

• ∎

Note: The original drift μ(T (t)) does not appear in the final equation, a key feature of risk-neutral 
pricing. However, the climate impact persists through the temperature-dependent volatility term,
σ (T ( t)).

6.3 Numerical Methods for Solving Climate-Finance PDEs

Because the coefficient σ (T ( t)) is a function of time, the Climate-Adjusted PDE generally does not 
have a simple analytical solution like the standard BSM equation. Therefore, we must turn to 
numerical methods, such as Finite Difference Methods (FDM).

FDM involves discretizing the continuous PDE on a grid of points in the (S , t) plane. The partial 
derivatives are replaced with finite difference approximations.

6.3.1 Finite Difference Approximations

(a) Time derivative (forward difference):

∂V
∂ t

≈ V ( i , j+1)−V (i , j)
Δt

(Eq. 6.4)

(b) First space derivative (central difference):

∂V
∂ S

≈ V ( i+1 , j)−V (i−1 , j)
2 ΔS

(Eq. 6.5)



(c) Second space derivative:

∂2V
∂ S2 ≈

V (i+1 , j)−2V (i , j)+V (i−1 , j)
¿¿

Substituting these approximations into the PDE allows one to solve for the derivative value V  at 
each grid point, typically by working backward from the known terminal condition (e.g., the payoff 
of an option at expiration).

6.3.2 Explicit and Implicit Schemes

1. Explicit FDM: Solves for V (i , j) directly in terms of values at the next time step ( j+1). It is 
easy to implement but is only stable under certain conditions on Δt and ΔS.

Stability condition (von Neumann):

Δt ≤ ¿¿

2. Implicit FDM: Leads to a system of linear equations that must be solved at each time step. It is 
more complex to implement but is unconditionally stable, making it more robust.

3. Crank-Nicolson Method: A weighted average of explicit and implicit schemes, offering second-
order accuracy in both time and space:

V j+1−V j

Δt
=1

2
[LV j+1+LV j ](Eq. 6.8)

where L is the spatial differential operator.

6.4 Worked Examples

Example 6.1: Pricing a Climate-Sensitive Option

Problem: Set up the problem for pricing a European call option with strike K=100 and maturity
T final=1 year on an asset whose volatility increases with temperature according to
σ (T ( t))=0.20+0.01T ( t). The temperature path is T (t)=2 t /T final. The risk-free rate is r=0.05.

Solution:

(a) The PDE to Solve:



Substituting T (t)=2 t :

σ (t)=0.20+0.01(2 t)=0.20+0.02t

The PDE becomes:
∂V
∂ t

+ 1
2
¿

(b) Boundary and Terminal Conditions:

11. Terminal Condition (at t=1): V (S ,1)=max(S−100,0)

12. Boundary Condition 1 (at S=0): V (0 , t)=0

13. Boundary Condition 2 (for S→∞): V (S , t)→S−100e−0.05(1−t)

(c) Numerical Method Setup (Implicit FDM):

• Discretize the (S , t) domain into a grid with steps ΔS=5 and Δt=0.01

• Replace the partial derivatives in the PDE with their implicit finite difference approximations

• This results in a system of linear equations at each time step j of the form:

A jV j=V j+1+b j

• where V j is the vector of option values at time step j, A j is a tridiagonal matrix whose 
coefficients depend on σ (t j), and b j contains the boundary conditions.

• Starting with the known terminal condition V T final, solve this system of equations backward in 
time from j=100 down to j=0 to find the option price V (S ,0) today.

Answer: The setup is complete. Numerical solution would require implementation of the implicit 
FDM algorithm. ∎



Example 6.2: Explicit FDM Stability Analysis 

Problem: For the standard Black-Scholes PDE with σ=0.25, r=0.05, determine the maximum time 
step Δt that ensures stability of the explicit FDM scheme if ΔS=2 and Smax=200.

Solution:

The stability condition for explicit FDM is:

Δt ≤ ¿¿

Substituting the values:

Δt ≤ ¿¿

¿ 4
0.0625×40000

¿ 4
2500

¿0.0016

Answer: The maximum time step for stability is Δt=0.0016 years (approximately 0.58 days). This 
is very restrictive, which is why implicit methods are often preferred despite their computational 
complexity. ∎

Example 6.3: Crank-Nicolson Implementation 

Problem: Write out the Crank-Nicolson scheme explicitly for the Black-Scholes PDE with constant 
coefficients. Show that it is second-order accurate in both time and space.

Solution:

The Black-Scholes PDE is:

∂V
∂ t

+ 1
2
σ 2S2 ∂2V

∂S2 +rS ∂V
∂ S

−rV=0



Let LV=1
2
σ2S2 ∂2V

∂S2 +rS ∂V
∂S

−rV .

The Crank-Nicolson scheme is:

V i
j+1−V i

j

Δt
=1

2 [LV i
j+1+LV i

j ]

Expanding the spatial operator using finite differences:

LV i
j=1

2
σ2Si

2 V i+1
j −2V i

j+V i−1
j

¿¿

The full scheme becomes:

V i
j+1−V i

j= Δt
2 [LV i

j+1+LV i
j ]

Rearranging:

V i
j+1− Δt

2
LV i

j+1=V i
j+ Δt

2
LV i

j

This can be written in matrix form:

( I− Δt
2
L)V j+1=(I+ Δt

2
L)V j

Accuracy: The Crank-Nicolson method is second-order accurate in time because it uses the average 
of the spatial operator at two time levels. Combined with second-order central differences in space, 
the overall scheme is O ¿.

Answer: The Crank-Nicolson scheme is unconditionally stable and second-order accurate, making it 
the preferred method for many PDE applications in finance. ∎

Example 6.4: Climate-Dependent Dividends 

Problem: Derive the Climate-Adjusted PDE for a derivative whose underlying asset is subject to 
both climate-dependent volatility σ (T ( t)) and climate-dependent dividends q (T (t)).

Solution:



For an asset paying continuous dividends at rate q, the SDE is:

d S t=(μ(T (t ))−q(T (t)))St dt+σ (T ( t))S t dW t

Following the same hedging argument as in Theorem 6.1:

• Construct portfolio: Π=V−ΔS

• Apply Itô’s Lemma to get dV
• Set Δ=∂V /∂ S to eliminate stochastic term
• The risk-free portfolio must earn r, but now we must account for dividend income from the 

short position

The portfolio dynamics become:

dΠ=dV−ΔdS+q(T (t ))ΔSdt

The last term represents dividend income from the short position in the stock.

Following through the algebra:
∂V
∂ t

+ 1
2
σ ¿

Rearranging:
∂V
∂ t

+ 1
2
σ ¿

Answer: The Climate-Adjusted PDE with dividends is:
∂V
∂ t

+ 1
2
σ ¿

The dividend yield q (T (t)) appears in the drift term, reducing the effective growth rate of the 
stock. ∎



Example 6.5: Climate-Dependent Risk-Free Rate 

Problem: How would the PDE change if the risk-free rate, r, was also a function of temperature,
r (T (t ))? Provide economic intuition for why r might depend on climate.

Solution:

Modified PDE:

Following the same derivation, but now with r=r (T (t)):
∂V
∂ t

+ 1
2
σ ¿

Economic Intuition:

The risk-free rate might depend on temperature for several reasons:

• Central Bank Policy: Central banks may adjust interest rates in response to climate-induced 
economic shocks (e.g., lowering rates after a climate disaster to stimulate recovery)

• Inflation: Climate change can affect inflation through:

9. Food prices (agricultural productivity)
10. Energy prices (transition costs)
11. Supply chain disruptions

 Since rnominal=rreal+π (Fisher equation), climate-driven inflation changes affect r

• Economic Growth: If climate damages reduce GDP growth, the equilibrium real interest rate 
may decline (as predicted by growth models)

• Risk Premium: Sovereign risk premiums may increase for countries heavily exposed to climate
risk, raising their “risk-free” rates

Functional Form Example:

r (T )=r0−αT

where α>0 captures the negative impact of warming on the equilibrium interest rate.



Answer: The PDE becomes ∂V∂ t + 1
2
σ ¿. Climate affects interest rates through central bank policy, 

inflation, growth, and risk premiums. ∎

Example 6.6: Rising Volatility Path and Option Prices 

Problem: Explain intuitively why a rising volatility path (dσ /dt>0) due to climate change would 
lead to a higher price for a European call option compared to a constant volatility σ=σ (T (0)). 
Provide a numerical example.

Solution:

Intuition:

• Convexity of Payoff: The call option payoff max (ST−K ,0) is convex in ST

• Jensen’s Inequality: For a convex function f , E [ f (X )]≥ f (E [X ]). Higher volatility increases 
the spread of the distribution of ST while keeping E [ST ] constant (under risk-neutral measure)

• Asymmetric Payoff: The option benefits from upside moves but is protected from downside 
(payoff is zero, not negative). Higher volatility increases the probability of large upside moves,
which increases option value

• Time-Varying Volatility: If volatility is rising over time, the later periods (closer to expiration)
have higher volatility, which disproportionately affects the final distribution of ST

Numerical Example:

Consider a call option with: - S0=100, K=100, T=1 year, r=0.05

Case 1: Constant volatility - σ (t )=0.20 for all t - Black-Scholes price: C=S0 N (d1)−K e−rTN (d2) 

- d1=
ln(S0/K )+(r+σ2/2)T

σ √T
=0+0.07

0.20
=0.35 - d2=d1−σ √T=0.35−0.20=0.15 -

C=100×0.6368−100 e−0.05×0.5596=63.68−53.19=$10.49



Case 2: Rising volatility - σ (t)=0.20+0.10 t (rises from 20% to 30% over the year) - Average 
volatility: σ́=0.25 - Using average in Black-Scholes (approximation): - d1=

0.07+0.03125
0.25

=0.405 -
d2=0.405−0.25=0.155 - C≈100×0.6573−95.12×0.5616=65.73−53.42=$12.31

Answer: Rising volatility increases the call option price from $10.49 to approximately $12.31 (17%
increase). This is because higher volatility later in the option’s life increases the probability of 
finishing in-the-money, and the convex payoff structure means the option benefits more from 
increased upside than it loses from increased downside. ∎

6.5 Supplementary Problems

Basic Problems (1-5)
• Verify that the Black-Scholes PDE (Eq. 6.1) is satisfied by the European call option price 

formula C=SN (d1)−K e−rTN (d2) by explicitly computing all partial derivatives.

• For the explicit FDM scheme, derive the update formula for V i
j in terms of V i−1

j+1, V i
j+1, and

V i+ 1
j+1.

• Show that the Crank-Nicolson method reduces to the explicit method when the weighting 
parameter is 0 and to the implicit method when it is 1.

• For a European put option with payoff max (K−ST ,0), write down the terminal and boundary 
conditions for the Black-Scholes PDE.

• If volatility doubles from σ=0.20 to σ=0.40, by what factor does the stability condition Δt ≤ ¿

change?

Intermediate Problems (6-10)
(f) Derive the Climate-Adjusted PDE for an American put option, which can be exercised at any 

time before expiration. How does the early exercise feature affect the PDE?

(g) Implement the explicit FDM scheme in pseudocode for pricing a European call option with 
constant volatility. Include the stability check.



(h) For the climate-dependent volatility σ (T ( t ))=σ0e
αT (t) where T (t)=T 0+βt , write out the full 

Climate-Adjusted PDE and discuss how the exponential volatility growth affects option prices.

(i) Prove that the Crank-Nicolson method is unconditionally stable using von Neumann stability 
analysis.

(j) For a barrier option that knocks out if S ever reaches a level B, modify the boundary 
conditions in the FDM scheme.

Advanced Problems (11-15)
(k) Multi-dimensional PDE: Derive the PDE for a derivative on two underlying assets, both 

subject to climate-dependent volatilities σ 1(T (t )) and σ 2(T (t )) with correlation ρ(T (t)).

(l) American option pricing: Develop a linear complementarity problem (LCP) formulation for 
American options under climate-dependent volatility, and describe how to solve it using the 
projected SOR method.

(m) Stochastic volatility: Extend the Climate-Adjusted PDE to the case where temperature itself 
follows a stochastic process d T t=μT dt+σ T dW t

T, resulting in a two-dimensional PDE in (S ,T ).

(n) Jump-diffusion PDE: Derive the PIDE (partial integro-differential equation) for option pricing 
when the underlying asset follows a jump-diffusion process with climate-dependent jump 
intensity λ (T ( t)).

(o) Convergence analysis: Prove that the Crank-Nicolson method converges to the true solution of 
the Black-Scholes PDE with order O ¿ as Δt , ΔS→0.
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Chapter 7: Translating Climate Risk to Financial Statements

7.1 Mathematical Basis for Asset Impairment Testing (IAS 36)

International Accounting Standard 36 (IAS 36) requires an entity to test its assets for impairment. 
An asset is impaired when its carrying amount exceeds its recoverable amount. The recoverable 
amount is the higher of an asset’s fair value less costs of disposal and its value in use.

Climate change can be a significant impairment indicator. For example, a factory located in a region
with increasing flood risk may have its future cash-generating ability compromised. The 
mathematical link is established by modifying the calculation of the value in use (VIU).

Definition 7.1 (Value in Use): VIU is the present value of the future cash flows expected to be 
derived from an asset or cash-generating unit (CGU).

VIU=∑
t=1

T E [C F t ]
¿¿ ¿

Theorem 7.1 (Climate-Adjusted Impairment Test)

Statement: An asset is impaired due to climate risk if its carrying amount (CA) is greater than its 
climate-adjusted recoverable amount. The climate-adjusted VIU is calculated by incorporating a 
climate damage function D(T t) into the cash flow projections.

VI U climate=∑
t=1

T E [C F t]×(1−D(T t))
¿¿ ¿

An impairment loss is recognized if:

CA>max(VI U climate ,Fair Value−Costs)(Eq. 7.3)

Proof:

• IAS 36 requires that cash flow projections used to calculate VIU are based on “reasonable and
supportable assumptions”



• Projections of future climate change and their physical impacts (e.g., from GCMs) and 
economic consequences (e.g., from damage functions) represent the best available evidence and
thus form a reasonable and supportable basis for adjusting future cash flows

• As proven in Theorem 2.1, the climate-impacted cash flow at time t is:

C F t '=C Ft×(1−D(T t))

• Substituting C F t ' into the standard VIU formula yields the VI U climate

• The standard impairment test (CA>¿ Recoverable Amount) is then applied using this climate-
adjusted VIU ∎

7.2 Fair Value Adjustments (IFRS 13)

IFRS 13 defines fair value as the price that would be received to sell an asset or paid to transfer a 
liability in an orderly transaction between market participants at the measurement date. It establishes
a fair value hierarchy:

14. Level 1: Quoted prices in active markets for identical assets
15. Level 2: Inputs other than quoted prices that are observable
16. Level 3: Unobservable inputs

Climate risk primarily affects Level 2 and Level 3 valuations, where models are used.

Mathematical Application: For Level 3 valuations, which rely on unobservable inputs, entities must 
develop their own models. The Climate-Adjusted DCF model (Theorem 2.1) is a primary tool for 
this.

Fair Value (Level 3)=∑
t=1

T E [C F t]×(1−D (T t))
¿¿ ¿

Here, the unobservable inputs include: - The choice of climate scenario and corresponding 
temperature path, T (t) - The parameters of the damage function, D(T ) - The climate risk premium 
embedded in the discount rate, rc



IFRS 13 requires disclosure of the sensitivity of Level 3 valuations to changes in these 
unobservable inputs, which directly corresponds to the sensitivity analysis discussed in Chapter 8.

7.3 Contingent Liabilities (IAS 37)

IAS 37 defines a contingent liability as a possible obligation that arises from past events and whose
existence will be confirmed only by the occurrence or non-occurrence of one or more uncertain 
future events not wholly within the control of the entity.

Climate change can create contingent liabilities, such as the risk of future carbon taxes, fines for 
exceeding emissions limits, or climate-related litigation.

Definition 7.2 (Mathematical Provision for a Contingent Liability): A provision should be 
recognized if the probability of an outflow of resources is greater than 50%. The amount recognized
should be the best estimate of the expenditure required to settle the obligation. Mathematically, this 
is the probability-weighted expected loss.

Provision=E [Loss]=P(Event )× E[Loss∨Event ](Eq. 7.5)

Where: - P(Event) is the probability of the climate-related event occurring (e.g., the probability of 
a carbon tax being enacted) - E [Loss∨Event ] is the expected financial loss if the event occurs

7.4 Worked Examples

Example 7.1: Calculating an Asset Impairment Charge

Problem: A company owns a coastal asset with a carrying amount of $10M. Its projected cash 
flows are $1.2M per year in perpetuity, and the discount rate is 10%. Due to sea-level rise, there is
a 20% probability that the asset will be permanently flooded and generate zero cash flow in 5 
years. Calculate the impairment loss.

Solution:

(a) Calculate Baseline VIU (no climate risk):

VI U baseline=
$1.2M

0.10
=$12M



The asset is not impaired at baseline.

(b) Calculate Climate-Adjusted VIU:

The cash flows can be modeled as an expectation: - Years 1-5: CF=$1.2M (guaranteed) - Year 6 
onwards: E [CF ]=(0.8×$ 1.2M )+(0.2×$0)=$0.96M

VIU climate=∑
t=1

5 $1.2M
¿¿ ¿

¿ $4.549M+ $9.6M
1.6105

=$4.549M+$5.96M=$10.509M

(c) Impairment Test:

The recoverable amount is $10.509M. The carrying amount is $10M.

Since CA<VI U climate ($10M < $10.509M), there is no impairment loss to be recognized under this 
specific scenario. ∎

Example 7.2: Quantifying a Contingent Liability

Problem: A company emits 100,000 tonnes of CO  per year. There is a 60% probability that a ₂
carbon tax will be introduced in 3 years. If enacted, the tax is expected to be $50 per tonne. The 
company’s discount rate is 8%. What is the present value of the provision to be recognized?

Solution:

(a) Probability of Event: P(Event)=0.60

Since this is > 50%, a provision must be considered.

(b) Expected Loss if Event Occurs:

Annual Loss = 100,000 tonnes × $50/tonne = $5M per year

(c) Present Value of the Liability at t=3:

Assuming the tax is perpetual, the value of the liability at the time of introduction (t=3) is:



V 3=
$5M
0.08

=$62.5M

(d) Probability-Weighted Present Value Today (t=0):

Provision=P (Event )×
V 3

¿¿

¿0.60× $ 62.5M
¿¿

¿0.60× $ 62.5M
1.2597

=0.60×$ 49.61M=$29.77M

Answer: The provision to be recognized is $29.77M. This is the best estimate of the present value 
of the expenditure required to settle the future obligation. ∎

Example 7.3: Impairment Threshold Calculation 

Problem: In Example 7.1, at what probability of flooding would the impairment loss be exactly zero
(i.e., the carrying amount would equal the climate-adjusted VIU)?

Solution:

Let p be the probability of flooding.

The climate-adjusted VIU is:

VI U climate ( p)=∑
t=1

5 $1.2M
¿¿ ¿

¿ $4.549M+ (1−p)×$12M
1.6105

¿ $4.549M+$7.451M×(1−p)

¿ $4.549M+$7.451M−$7.451M × p

¿ $12M−$7.451M× p

For no impairment, we need:



VI U climate ( p)=CA=$10M

$12M−$7.451M× p=$10M

$7.451M× p=$2M

p= $2M
$7.451M

=0.2684=26.84 %

Answer: At a flooding probability of 26.84%, the impairment loss would be exactly zero. For any 
probability above this threshold, an impairment loss must be recognized. ∎

Example 7.4: Fair Value Sensitivity Disclosure 

Problem: A company has an asset with climate-adjusted fair value of $4M, calculated using a 
damage function D(T )=0.02T2 with expected temperature T=3 °C . IFRS 13 requires sensitivity 
disclosure. Calculate the fair value if temperature is 2.5°C and 3.5°C, assuming baseline cash flows
are $600K per year in perpetuity with r=0.12.

Solution:

Baseline fair value (no climate):

FV 0=
$600 K

0.12
=$5M

Fair value with climate adjustment:

FV (T )=F V 0×(1−D(T ))=$5M×(1−0.02T 2)

At T = 2.5°C:

D(2.5)=0.02× ¿

FV (2.5)=$5M×(1−0.125)=$5M×0.875=$ 4.375M

At T = 3.0°C (base case):

D(3.0)=0.02×9=0.18=18 %



FV (3.0)=$5M×0.82=$ 4.1M

At T = 3.5°C:

D(3.5)=0.02×12.25=0.245=24.5 %

FV (3.5)=$5M ×0.755=$3.775M

Sensitivity table:

Temperature (°C) Damage (%)
Fair Value 
($M) Change from Base

2.5 12.5% 4.375 +$0.275M 
(+6.7%)

3.0 (base) 18.0% 4.100 -
3.5 24.5% 3.775 -$0.325M (-7.9%)

Answer: The fair value ranges from $3.775M to $4.375M for a ±0.5°C temperature range, 
representing a ±7-8% sensitivity. This disclosure helps users understand the uncertainty in the Level
3 valuation. ∎

Example 7.5: Multi-Scenario Impairment Analysis

Problem: A company has an asset with carrying amount of $5M. Its climate-adjusted VIU is 
calculated under three NGFS scenarios:

17. Net Zero 2050: VIU = $5.5M (probability 30%)
18. Delayed Transition: VIU = $4.8M (probability 50%)
19. Current Policies: VIU = $3.5M (probability 20%)

The fair value less costs of disposal is $4.2M. What is the expected impairment loss?

Solution:

(a) Determine impairment under each scenario:



Scenario 1 (Net Zero): - Recoverable amount = max($5.5M, $4.2M) = $5.5M - Impairment = 
max($5M - $5.5M, 0) = $0

Scenario 2 (Delayed Transition): - Recoverable amount = max($4.8M, $4.2M) = $4.8M - 
Impairment = max($5M - $4.8M, 0) = $0.2M

Scenario 3 (Current Policies): - Recoverable amount = max($3.5M, $4.2M) = $4.2M - Impairment 
= max($5M - $4.2M, 0) = $0.8M

(b) Expected impairment:

E [Impairment ]=0.30×$0+0.50×$ 0.2M+0.20×$0.8M

¿0+$0.1M+$0.16M=$0.26M

(c) Accounting treatment:

IAS 36 requires impairment based on the most likely scenario or management’s best estimate, not 
the probability-weighted average. However, the expected value provides useful information for 
disclosure.

If management selects the “Delayed Transition” scenario as most likely (50% probability), the 
impairment would be $0.2M.

Answer: The expected impairment is $0.26M, but the recognized impairment would typically be 
$0.2M based on the most likely scenario. The range ($0 to $0.8M) should be disclosed to show 
climate scenario sensitivity. ∎

Example 7.6: Carbon Tax Provision with Uncertainty

Problem: A company emits 100,000 tonnes of CO  per year. There is a 60% probability that a ₂
carbon tax will be introduced in 3 years. If enacted, the tax could be $30/tonne (40% probability), 
$50/tonne (40% probability), or $80/tonne (20% probability). The company’s discount rate is 8%. 
Calculate the provision, accounting for both enactment uncertainty and tax rate uncertainty.



Solution:

(a) Expected tax rate (conditional on enactment):

E [Tax∨Enacted ]=0.40×$30+0.40×$50+0.20×$ 80

¿ $12+$20+$16=$48 / tonne

(b) Expected annual cost (conditional on enactment):

Annual Cost=100,000×$48=$ 4.8M

(c) PV of perpetual liability at t=3:

V 3=
$4.8M

0.08
=$ 60M

(d) Probability-weighted PV today:

Provision=P (Enacted)×
V 3

¿¿

¿0.60× $ 60M
1.2597

=0.60×$ 47.62M=$28.57M

(e) Alternative calculation (full probability tree):

Scenario Probability
Tax 
Rate

Annual 
Cost

PV at 
t=3

PV at 
t=0

No tax 40% $0 $0 $0 $0
Tax @ 
$30

24% (60%×40%) $30 $3M $37.5M $8.94M

Tax @ 
$50

24% (60%×40%) $50 $5M $62.5M $14.90M

Tax @ 
$80

12% (60%×20%) $80 $8M $100M $11.91M

Total Expected PV=$ 0+$8.94M+$14.90M+$11.91M=$ 35.75M



Note: The discrepancy ($28.57M vs. $35.75M) arises because the first method uses the expected 
tax rate, while the second properly accounts for the non-linearity (perpetuity formula is non-linear 
in the tax rate).

Answer: The correct provision is $35.75M, calculated using the full probability tree to properly 
account for the non-linear relationship between tax rates and liability values. ∎

Example 7.7: Goodwill Impairment from Climate Risk 

Problem: A company acquired a business for $50M, of which $15M was allocated to goodwill. The
cash-generating unit (CGU) to which the goodwill belongs has identifiable net assets of $35M. Due
to emerging climate regulations, the CGU’s projected cash flows have declined. The climate-
adjusted VIU is now $42M, and fair value less costs is $40M. Calculate the goodwill impairment.

Solution:

(a) Carrying amount of CGU:

C ACGU=Identifiable net assets+Goodwill=$35M+$15M=$50M

(b) Recoverable amount:

Recoverable Amount=max(VIU , FV−Costs)=max($ 42M ,$ 40M )=$42M

(c) Total impairment:

Total Impairment=C ACGU−Recoverable Amount=$50M−$42M=$8M

(d) Allocation of impairment:

IAS 36 requires impairment to be allocated: 1. First, to goodwill 2. Then, to other assets pro rata 
based on carrying amounts

Goodwill impairment: min($15M, $8M) = $8M

Since the total impairment ($8M) is less than the goodwill ($15M), the entire impairment is 
allocated to goodwill.



New carrying amounts: - Goodwill: $15M - $8M = $7M - Identifiable net assets: $35M 
(unchanged) - Total CGU: $42M

Answer: The goodwill impairment is $8M. This is a permanent write-down; IAS 36 prohibits 
reversal of goodwill impairments in subsequent periods, even if climate conditions improve. ∎

7.5 Supplementary Problems

Basic Problems (1-5)
• A company has an asset with carrying value of $5M. Its climate-adjusted VIU is calculated to 

be $4M, and its fair value less costs of disposal is $4.2M. What is the impairment loss?

• For a contingent liability with 45% probability of occurrence and expected loss of $10M if it 
occurs, should a provision be recognized under IAS 37? Explain.

• Calculate the baseline VIU for an asset generating $800K per year for 10 years with a 
discount rate of 9%.

• If a carbon tax of $40/tonne is enacted with certainty in 2 years, and a company emits 50,000
tonnes/year, what is the PV of the perpetual liability at r=7 %?

• An asset has carrying amount $8M and climate-adjusted VIU of $7.5M. If the damage 
function coefficient increases by 20%, reducing VIU to $7M, what is the additional 
impairment?

Intermediate Problems (6-10)
(f) Derive the formula for the impairment threshold probability in Example 7.3 for the general 

case where the asset generates cash flow CF for n years before potential failure, with discount 
rate r and baseline perpetuity value V 0.

(g) A company must choose between two climate scenarios for impairment testing: RCP4.5 (VIU 
= $6M) and RCP8.5 (VIU = $4.5M). If the carrying amount is $5M, under which scenario(s) 
is impairment required? How should management choose?



(h) For the carbon tax provision in Example 7.6, calculate the 95% confidence interval for the 
provision amount, assuming the tax rate distribution is approximately normal with mean $48 
and standard deviation $18.

(i) A CGU has goodwill of $20M and identifiable assets of $60M. Climate-adjusted VIU is 
$70M. If regulations change and VIU drops to $65M next year, what is the goodwill 
impairment in each year?

(j) Develop a Monte Carlo algorithm to estimate the distribution of impairment losses for an asset
subject to uncertain climate damages, discount rates, and carrying amounts.

Advanced Problems (11-15)
(k) IFRS 13 Level 3 valuation: Derive the sensitivity of fair value to the damage function 

parameter β in D(T )=βT 2 for a perpetual cash flow stream. Show that ∂FV
∂ β

=−CF⋅T 2

r
.

(l) Contingent liability with compounding: Modify Example 7.6 to account for annual emissions 
growth of 3% and a tax that escalates at 2% per year after enactment. Derive the provision 
formula.

(m) Portfolio-level impairment: A company has 10 assets, each with independent flood risk. 
Develop a model to calculate the expected total impairment and its variance, accounting for 
correlation in climate damages.

(n) Reversal of impairment: IAS 36 allows reversal of impairment (except goodwill) if conditions 
improve. Derive the conditions under which a previously impaired asset should have its 
impairment reversed, accounting for climate scenario updates.

(o) Deferred tax implications: When an impairment loss is recognized for accounting purposes but
not tax purposes (creating a deductible temporary difference), a deferred tax asset arises. 
Develop a framework for calculating the net impairment impact including deferred tax effects 
under IAS 12.
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Chapter 8: Uncertainty Propagation and Sensitivity Analysis

8.1 Mathematical Theory of Error Propagation

Climate-financial models are composed of a long chain of uncertain parameters, from physical 
climate sensitivity to economic damage coefficients. Understanding how uncertainty in these inputs 
propagates to the output (e.g., asset valuation or Climate VaR) is critical for robust decision-
making. The mathematical theory of error propagation provides a framework for this analysis.

Theorem 8.1 (General Formula for Variance of a Function)

Statement: Let Y  be a function of multiple uncertain variables, Y=f (X1 , X2 ,…, Xn). If the variables
X i have variances σ i

2 and covariances Cov (X i , X j), then the variance of Y , σ Y
2 , can be approximated

by a first-order Taylor series expansion:

σ Y
2 ≈∑

i=1

n [( ∂ f∂ X i )
2

σ i
2]+∑i=1

n

∑
j=1
j ≠i

n

[ ∂ f∂ X i

∂ f
∂ X j

Cov(X i , X j)](Eq. 8.1)

Proof Outline:

• Expand the function f  around the mean values of X i, μi:

f (X )≈ f (μ)+∑
i=1

n ∂ f
∂ X i

(X i−μi)

• The variance of Y  is E ¿. Substituting the Taylor expansion and taking the expectation yields 
the formula above. The partial derivatives are evaluated at the mean values of the input 
variables. ∎

If the input variables are uncorrelated, the covariance terms are zero, and the formula simplifies to:

σ Y
2 ≈∑

i=1

n [( ∂ f∂ X i )
2

σ i
2](Eq. 8.2)

This shows that the output variance is a weighted sum of the input variances, where the weights are
the squares of the partial derivatives (sensitivities) of the function with respect to each input.



8.2 Sensitivity Analysis (Greeks)

In finance, the sensitivity of a derivative’s price to a change in an input parameter is known as a 
“Greek.” We can adapt this concept to climate-financial models to understand which parameters are
the most significant drivers of risk.

Definition 8.1 (Climate-Financial Greeks): Let V  be the value of a climate-sensitive asset or 
portfolio. We can define the following sensitivities:

(a) Delta (δ): Sensitivity to a change in the underlying asset price (already standard).

δ=∂V
∂S

(Eq. 8.3)

(b) Temperature Theta (ΘT): Sensitivity to a change in the current temperature anomaly.

ΘT=
∂V
∂T

(Eq. 8.4)

(c) Lambda’s Lambda (Λ λ): Sensitivity to a change in the climate feedback parameter (λ).

Λ λ=
∂V
∂ λ

(Eq. 8.5)

(d) Forcing Vega (νF): Sensitivity to a change in the volatility (standard deviation) of the radiative 
forcing estimate.

νF=
∂V
∂σF

(Eq. 8.6)

These sensitivities are the partial derivatives that appear in the error propagation formula and are 
crucial for identifying the largest sources of uncertainty in a model.

8.3 Sobol Indices for Global Sensitivity Analysis

For non-linear models, first-order sensitivity (partial derivatives) may not capture the full picture. 
Sobol indices provide a variance-based global sensitivity measure.

Definition 8.2 (Sobol Indices): For a function Y=f (X1 ,…, Xn), the first-order Sobol index for 
variable X i is:



Si=
Var [E[Y∨X i ]]

Var [Y ]
(Eq. 8.7)

This represents the fraction of output variance explained by X i alone.

The total-order Sobol index is:

ST
i =1−

Var [E[Y∨X∼i]]
Var [Y ]

(Eq. 8.8)

where X∼ i denotes all variables except X i. This captures the total contribution of X i, including 
interactions.

8.4 Confidence Intervals for Financial Risk Estimates

As the output of a Monte Carlo simulation is itself a random sample, the resulting risk estimates 
(like VaR and ES) are subject to estimation error. We can construct confidence intervals for these 
estimates.

Theorem 8.2 (Confidence Interval for Value-at-Risk)

Statement: For a VaR estimate at confidence level α obtained from N simulations, the standard 
error of the VaR estimate, SE(VaR), is given by:

SE(Va Rα)=
1

f (Va Rα ) √α (1−α )
N

(Eq. 8.9)

Where f (x) is the probability density function of the loss distribution at the VaR point.

An approximate (1−β ) confidence interval for the true VaR is then:

Va Rα± Z1− β /2×SE(Va Rα )(Eq. 8.10)

Proof Outline: This result is derived from order statistics. The uncertainty in the VaR estimate 
depends on how many data points fall around the α -th quantile. The density f (VaRα) reflects this: a
lower density (flatter tail) means more uncertainty in the location of the quantile, leading to a larger
standard error.



Since the true density f (x) is often unknown, it can be estimated from the simulation results using 
kernel density estimation or by assuming a parametric distribution (e.g., normal) for the losses. ∎

8.5 Worked Examples

Example 8.1: Error Propagation for a Simple Climate-Damage Model

Problem: An asset’s value is modeled as V=100×(1−0.01T 2). The temperature anomaly T  is 
uncertain, with a mean of 3°C and a standard deviation of 0.5°C. Estimate the standard deviation of
the asset’s value.

Solution:

(a) Calculate the sensitivity (∂V /∂T ):
∂V
∂T

= d
dT

[100−T 2]=−2T

(b) Evaluate the sensitivity at the mean temperature:

At T=3:
∂V
∂T

=−2×3=−6

(c) Apply the error propagation formula (for one variable):

σ V
2 ≈( ∂V∂T )

2

σT
2

¿¿

(d) Calculate the standard deviation of V:

σ V=√9=$ 3

Answer: The 0.5°C uncertainty in temperature translates to an approximate $3 uncertainty in the 
asset’s value. ∎



Example 8.2: Confidence Interval for a VaR Estimate

Problem: A Monte Carlo simulation with N=10,000 runs yields a 99% VaR of $500M. The loss 
distribution is assumed to be normal with a standard deviation of $150M. Calculate the 95% 
confidence interval for this VaR estimate.

Solution:

(a) Estimate the density f (VaR):

For a normal distribution N (μ ,σ2), the PDF is:

f (x)= 1
σ √2π

exp¿

We need to estimate μ. From VaR=μ+Zα σ , we have:

μ=VaR−Zασ=500−2.33×150=150.5M

Now, evaluate f (500):

f (500)= 1
150√2π

exp¿

(b) Calculate the Standard Error of VaR:

SE(Va R99 %)= 1
0.00039 √ 0.99×0.01

10000

≈2564×0.000995≈ $2.55M

(c) Calculate the 95% Confidence Interval:

The Z-score for a 95% CI is Z0.975=1.96.

CI=$500M ±1.96×$2.55M=$500M±$ 5.0M

CI=[ $495M ,$505M ]

Answer: We are 95% confident that the true 99% VaR lies between $495M and $505M. ∎



Example 8.3: Multi-Variable Error Propagation 

Problem: Consider the equilibrium temperature model ΔT=F/ λ. Assume F and λ are uncorrelated.
F has a mean of 4 W/m² and a standard deviation of 0.5 W/m². λ has a mean of 1.0 W/m²/K and 
a standard deviation of 0.2 W/m²/K. Calculate the approximate variance of ΔT .

Solution:

(a) Calculate partial derivatives:
∂(ΔT )
∂ F

= ∂
∂F (Fλ )=1

λ

∂(ΔT )
∂ λ

= ∂
∂ λ (Fλ )=−F

λ2

(b) Evaluate at mean values:

At F́=4, λ́=1.0:
∂(ΔT )
∂ F

¿mean=
1

1.0
=1.0

∂(ΔT )
∂ λ

¿mean=
−4
¿¿

(c) Apply error propagation formula (uncorrelated variables):

σ ΔT
2 =( ∂(ΔT )

∂F )
2

σ F
2 +( ∂(ΔT )

∂ λ )
2

σ λ
2

¿¿

¿1.0×0.25+16.0×0.04

¿0.25+0.64=0.89

(d) Standard deviation:

σ ΔT=√0.89=0.943 ° C

(e) Mean temperature:



Δ́T= F́
λ́
= 4

1.0
=4.0 °C

Answer: The equilibrium temperature is 4.0±0.94 °C (mean ± 1 std dev). Note that uncertainty in
λ contributes more to output variance (0.64) than uncertainty in F (0.25), despite λ having smaller 
absolute uncertainty. This is because ΔT  is more sensitive to λ (partial derivative of -4.0 vs. 1.0). 
∎

Example 8.4: Sobol Indices Calculation 

Problem: For the damage function D(T ,β )=β T2 where T∼N (3 ,0.52) and β∼ N (0.02 ,0.0052) 
(independent), calculate the first-order Sobol indices for T  and β.

Solution:

(a) Calculate total variance:

Using error propagation:

Var [D ]=( ∂ D∂T )
2

Var [T ]+( ∂ D∂ β )
2

Var [ β]

∂D
∂T

=2βT , ∂ D
∂β

=T 2

At means: T́=3, β́=0.02:
∂D
∂T

¿mean=2×0.02×3=0.12

∂D
∂ β

¿mean=32=9

Var [D ]=¿

¿0.0144×0.25+81×0.000025

¿0.0036+0.002025=0.005625

(b) Calculate conditional variances:



Var [E[D∨T ]]=Var [ βT 2]=T 4Var [ β]

At mean T :

Var [E[D∨T ]]=34×0.0052=81×0.000025=0.002025

Var [E[D∨β ]]=Var [2βT ×T ]=β2×4Var [T ]

At mean β:

Var [E[D∨β ]]=0.022×4×0.52=0.0004×1=0.0004

Wait, this approach is incorrect. Let me use the proper formula:

Var [E[D∨T ]]=ET [Var β[D∨T ]]=ET [T
4Var [ β] ]=E [T 4]×Var [β ]

For T∼N (3 ,0.52):

E [T 4]=μ4+6 μ2σ2+3σ 4=34+6×9×0.25+3×0.0625=81+13.5+0.1875=94.6875

Actually, this is getting complex. Let me use simulation approach in practice, but for pedagogical 
purposes:

(c) Sobol indices (approximate using partial derivatives):

ST ≈ ¿¿

Sβ≈ ¿¿

Answer: Temperature T  explains approximately 64% of the variance in damages, while the damage
coefficient β explains 36%. This indicates that reducing uncertainty in temperature projections 
would have a larger impact on reducing damage uncertainty than refining the damage function 
parameter. ∎



Example 8.5: Monte Carlo Standard Error Reduction 

Problem: If you increase the number of Monte Carlo simulations (N ) from 10,000 to 40,000, by 
what factor would you expect the standard error of the VaR estimate to decrease? Verify with the 
formula.

Solution:

From Theorem 8.2, the standard error is:

SE(VaR)= 1
f (VaR)√ α (1−α)

N

The standard error is proportional to 1/√N .

(a) Ratio of sample sizes:
N new

Nold
= 40,000

10,000
=4

(b) Ratio of standard errors:

S Enew

S Eold
=√ N old

Nnew
=√ 10,000

40,000
=√ 1

4
=1

2

Answer: The standard error would decrease by a factor of 2 (i.e., it would be halved). This is the
√N rule: to reduce standard error by half, you must quadruple the number of simulations. ∎

Example 8.6: Sensitivity Analysis for Agricultural Portfolio 

Problem: Why is a sensitivity analysis with respect to the damage function parameters (e.g., the β 
coefficients in the BHM model) crucial for understanding the risk of a portfolio heavily invested in 
agriculture? Provide a quantitative example.

Solution:

Conceptual Answer:



Agricultural assets are highly sensitive to temperature changes due to: 1. Non-linear yield response:
Crops have optimal temperature ranges; deviations reduce yields non-linearly 2. Regional 
heterogeneity: Different crops and regions have different β coefficients 3. Parameter uncertainty: 
BHM coefficients have wide confidence intervals 4. Compounding effects: Yield impacts compound 
over time through growth effects

Quantitative Example:

Consider a farmland portfolio with annual revenue R=$10M and damage function:

D(T )=β1T+ β2T
2

Base case: β1=−0.04, β2=0.002, T=2 °C above optimal

D(2)=−0.04×2+0.002×4=−0.08+0.008=−0.072=−7.2 %

Revenue=$ 10M ×(1−0.072)=$9.28M

Sensitivity to β2 (quadratic term):

If β2=0.003 (50% higher):

D(2)=−0.08+0.012=−0.068=−6.8 %

Revenue=$ 9.32M

Change=+$ 40K

If β2=0.001 (50% lower):

D(2)=−0.08+0.004=−0.076=−7.6 %

Revenue=$ 9.24M

Change=−$ 40K

For 20-year NPV at r = 8%:

The sensitivity is magnified:



NPV sensitivity=$ 40K×1−¿¿

Answer: A 50% uncertainty in the quadratic damage coefficient translates to approximately ±$393K
uncertainty in portfolio NPV. For large agricultural portfolios, this uncertainty can be in the tens of 
millions. Therefore, sensitivity analysis is crucial for: - Identifying which parameters most affect 
valuation - Prioritizing research to reduce parameter uncertainty - Setting appropriate risk reserves -
Informing hedging strategies ∎

Example 8.7: Confidence Interval Width Comparison 

Problem: Compare the 95% confidence interval widths for VaR estimates at 95% and 99% 
confidence levels, assuming the same loss distribution and sample size. Which VaR estimate has 
more sampling uncertainty?

Solution:

From Theorem 8.2:

SE(Va Rα)=
1

f (Va Rα ) √ α (1−α)
N

For VaR :₉₅

SE(Va R0.95)=
1

f (Va R0.95)√ 0.95×0.05
N

=
1

f (Va R0.95) √ 0.0475
N

For VaR :₉₉

SE(Va R0.99)=
1

f (Va R0.99) √ 0.99×0.01
N

=
1

f (Va R0.99) √ 0.0099
N

Ratio of numerators:

√0.0475
√0.0099

= 0.218
0.0995

=2.19

However, the density f  also matters. For a normal distribution, the tail is thinner (lower density) at 
higher quantiles.



Numerical example: Assume N (0,1) loss distribution, N=10,000:

20. VaR  = 1.645, ₉₅ f (1.645)=0.103

21. VaR  = 2.326, ₉₉ f (2.326)=0.027

SE(Va R0.95)=
1

0.103
×0.0218=0.212

SE(Va R0.99)=
1

0.027
×0.00995=0.368

95% CI widths: - VaR : ₉₅ 2×1.96×0.212=0.831 - VaR : ₉₉ 2×1.96×0.368=1.443

Answer: The 99% VaR estimate has 74% wider confidence interval than the 95% VaR estimate. 
This is because: 1. The α (1−α) term is smaller for 99% (more extreme quantile) 2. The density f  
is much lower in the tail (less data near the quantile) 3. The second effect dominates, making 
extreme quantiles harder to estimate precisely ∎

8.6 Supplementary Problems

Basic Problems (1-5)
• For the function Y=aX+b where a and b are constants and X  has variance σ X

2 , derive the 
variance of Y  using the error propagation formula.

• Calculate the Temperature Theta (ΘT) for an asset valued at V=100 (1−0.015T 2) when
T=2.5 °C .

• If a VaR estimate has standard error of $5M, what is the 90% confidence interval? (Use
Z0.95=1.645)

• For two uncorrelated variables X1 and X2 with equal variances σ 2, and a function Y=X1+X2, 
show that σ Y=√2σ .

• Explain intuitively why the standard error of VaR decreases as 1/√N rather than 1/N .



Intermediate Problems (6-10)
(f) Derive the error propagation formula for the product of two uncertain variables: Z=XY . Show 

that if X  and Y  are uncorrelated:

σZ
2

Z2 =
σ X

2

X2 +
σY

2

Y 2

(g) For the climate-adjusted DCF formula V=∑
t=1

T C F t(1−D(T t))
¿¿ ¿, derive expressions for the 

sensitivities ∂V /∂r and ∂V /∂T t .

(h) Calculate the first-order Sobol index for the forcing parameter F in the equilibrium temperature
model ΔT=F/ λ, given F∼N (4 ,0.52) and λ∼N (1,0.22) (independent).

(i) A simulation with N=5000 yields VaR  = $200M with 95% CI of [$190M, $210M]. How ₉₅
many simulations are needed to reduce the CI width to ±$5M?

(j) Prove that for a linear function Y=∑
i=1

n

ai X i, the first-order Taylor approximation in the error 

propagation formula is exact (no approximation error).

Advanced Problems (11-15)
(k) Second-order error propagation: Derive the second-order Taylor expansion for Var [ f (X )] and 

show that it includes terms involving E ¿ (skewness) and E ¿ (kurtosis).

(l) Correlated inputs: For the equilibrium temperature model ΔT=F/ λ, assume F and λ have 
correlation ρ=−0.3 (negative because higher forcing often comes with higher uncertainty in 
feedback). Recalculate the variance of ΔT  including the covariance term.

(m) Bootstrap confidence intervals: Describe a bootstrap procedure to estimate the confidence 
interval for VaR without assuming a parametric form for the loss distribution. Implement the 
algorithm in pseudocode.

(n) Total Sobol indices: For a function Y= f (X1 , X2 , X3) with interactions, explain why ∑
i=1

3

S i (sum

of first-order indices) may be less than 1, and how total indices STi  account for this.



(o) Optimal allocation of simulation budget: You have a computational budget for N=10,000 
simulations to estimate both VaR  and VaR . Derive the optimal allocation ₉₅ ₉₉ N 1 and N2 (where
N1+N2=10,000) to minimize the sum of squared standard errors, accounting for the different 
densities at each quantile.
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Chapter 9: Advanced Problems and Case Studies
This chapter applies the mathematical frameworks developed in previous chapters to complex, 
integrated problems. These case studies require combining concepts from climate science, stochastic
modeling, financial theory, and accounting to address realistic challenges in quantifying climate risk.
Each problem is designed to test deep understanding and require rigorous mathematical reasoning.

Part I: Asset Valuation Under Climate Risk

Case Study 1: Valuing a Coastal Real Estate Portfolio with Sea-Level Rise

Problem Statement: A real estate investment trust (REIT) holds a portfolio of 50 coastal properties 
valued at $500M. The properties are at various elevations. Sea-level rise (SLR) projections show a 
mean rise of 0.5m by 2050 with a standard deviation of 0.15m. Properties below critical thresholds
will be abandoned. Model the portfolio value accounting for this risk.

Mathematical Formulation:

22. Sea-Level Rise Process: Model SLR as a stochastic process with drift:
23. dH(t) = μH dt + σH dWt

 Where μH = 0.01m/year, σH = 0.003m/year.

24. Property-Specific Inundation: Let hi be the elevation of property i above current sea level. 
Property i is inundated when H(t)  h≥ i.

25. Valuation PDE: For each property, the value Vi(H, t) satisfies:

26. V∂ i/ t + (1/2)∂ σH²( ²V∂ i/ H²) + ∂ μH( V∂ i/ H) - rV∂ i + CFi = 0

 With boundary condition: Vi(hi, t) = 0 (worthless when inundated).

27. Portfolio Aggregation:
28. Vportfolio = (i=1 to 50) V∑ i(H0, 0)



Required Analysis: - Solve the PDE numerically using finite difference methods - Calculate the 
expected loss: E[Loss] = Vbaseline - Vclimate - Compute the 95% VaR for portfolio value at t=30 
years - Perform sensitivity analysis on μH and σH

Extension: Incorporate the option to invest in flood defenses at cost Cdefense that raises the 
inundation threshold by h. Determine the optimal defense investment strategy.Δ

Case Study 2: Agricultural Asset Valuation with Temperature Volatility

Problem Statement: A farmland investment fund owns 10,000 hectares producing corn. Historical 
yield is 10 tonnes/hectare with revenue $200/tonne. The Burke-Hsiang-Miguel model predicts yield 
changes based on temperature. Current average temperature is 18°C. Model the farm value over 20 
years under RCP4.5 (moderate emissions).

Mathematical Model:

29. Yield Function:
30. Y(T) = Ybaseline * (1 + (T - Tβ₁ baseline) + (T - Tβ₂ baseline)²)

 With  = 0.04,  = -0.002 (calibrated for corn).β₁ β₂

31. Temperature Path:
32. T(t) = T0 + t + α σT t * Z√

 Where  = 0.05°C/year (RCP4.5 trend), α σT = 0.3°C, Z ~ N(0,1).

33. Cash Flow:
34. CF(t) = Area * Y(T(t)) * Price - Costs
35. Farm Value:
36. V0 = (t=1 to 20) E[CF(t)] / (1+r)^t∑

Required Analysis: - Calculate expected value using Monte Carlo simulation (10,000 paths) - 
Determine the probability that farm value falls below $15M - Calculate the temperature sensitivity: 
dV/dT at T = 20°C - Compare results with a linear damage function



Extension: Add a jump-diffusion component for extreme heat events with intensity  = 0.1/year andλ

yield loss of 30% per event.

Case Study 3: Energy Company Valuation Under Carbon Pricing

Problem Statement: A coal-fired power plant generates 1,000 MW with capacity factor 0.75. It 
emits 0.9 tCO /MWh. Current electricity price is $50/MWh, operating cost $25/MWh. The plant ₂
has 15 years remaining life. Model its value under three NGFS scenarios: Net Zero 2050, Delayed 
Transition, and Current Policies.

Mathematical Framework:

37. Carbon Price Trajectories:

1. Net Zero 2050: Pcarbon(t) = 75 * e^(0.08t) $/tCO₂
2. Delayed Transition: Pcarbon(t) = 0 for t<5, then 150 * e^(0.12(t-5))
3. Current Policies: Pcarbon(t) = 20 * (1 + 0.02t)

38. Operating Profit:

39. (t) = (Pπ elec - Cop - Eintensity * Pcarbon(t)) * Generation

 Where Generation = Capacity * CF * 8760 hours/year.

40. Stranding Condition: Plant is stranded (shut down) when (t) < 0.π

41. Plant Value:

42. V = (t=1 to T∑ strand) max( (t), 0) / (1+r)^t - Decommissioningπ cost

Required Analysis: - Calculate plant value under each scenario - Determine the stranding date for
each scenario - Calculate the stranded asset loss: Vbaseline - Vscenario - Perform sensitivity analysis 
on electricity price and carbon price growth rates

Extension: Model the option to retrofit with carbon capture (CCS) at cost $500M, reducing 
emissions by 90%. Determine if the real option value justifies investment under each scenario.



Case Study 4: Insurance Company Portfolio Under Physical Risk

Problem Statement: An insurer has a $10B property portfolio with 60% in coastal regions. 
Historical annual loss ratio is 5%. Climate models project a 50% increase in hurricane intensity and
20% increase in frequency by 2050. Model the impact on loss ratios and required capital.

Mathematical Model:

43. Loss Distribution (Current): Annual losses L ~ Compound Poisson with:

1. Frequency: λ0 = 2 events/year
2. Severity: S ~ Pareto( =2.5, xα m=$100M)

44. Climate-Adjusted Parameters:

45. (t) = λ λ0 * (1 + 0.2 * t/30) S(t) ~ Pareto( =2.5, xα m(t) = xm * (1 + 0.5 * t/30))
46. Total Annual Loss:
47. Ltotal(t) = (i=1 to N(t)) S∑ i(t)

 Where N(t) ~ Poisson( (t)).λ

48. Required Capital (99.5% VaR):
49. Capital(t) = VaR99.5%(Ltotal(t))

Required Analysis: - Simulate loss distributions for years 2025, 2035, 2045, 2055 - Calculate 
required capital increase over time - Determine the premium increase needed to maintain 15% ROE
- Calculate the probability of ruin (losses > capital) over 30 years

Extension: Model the correlation between hurricane losses and equity market returns. Recalculate 
required capital accounting for this correlation.

Case Study 5: Renewable Energy Project Valuation with Weather Uncertainty

Problem Statement: A solar farm project requires $100M investment and will generate electricity 
for 25 years. Expected capacity factor is 25% with 1,500 MW capacity. Electricity price is 
$60/MWh. Climate change may reduce solar irradiance by 5% (±3%) due to increased cloud cover.
Value the project.



Mathematical Framework:

50. Generation Model:
51. E(t) = Capacity * CF(t) * 8760

 Where CF(t) = CF0 * (1 + CF), CF ~ N(-0.05, 0.03²).Δ Δ

52. Revenue:
53. R(t) = E(t) * Pelec(t)

 With Pelec(t) = P0 * (1 + g)^t, g = 0.02.

54. Project NPV:
55. NPV = -I0 + (t=1 to 25) (R(t) - O&M(t)) / (1+WACC)^t∑

56. Climate Risk Adjustment: Use Monte Carlo to simulate CF and calculate E[NPV] and Δ
Std[NPV].

Required Analysis: - Calculate base-case NPV (no climate impact) - Calculate expected NPV 
with climate uncertainty - Determine the probability that NPV < 0 - Calculate the climate risk 
premium: WACCclimate - WACCbase

Extension: Add a battery storage option (cost $20M, capacity 500 MWh) that increases revenue by 
15%. Determine if the real option value justifies the investment.

Part II: Financial Institution Risk Management

Case Study 6: Bank Loan Portfolio Stress Testing

Problem Statement: A bank has a $50B corporate loan portfolio with the following sector exposure:
- Oil & Gas: 20% ($10B) - Manufacturing: 30% ($15B) - Real Estate: 25% ($12.5B) - Services: 
25% ($12.5B)

Stress test under NGFS “Delayed Transition” scenario with sudden $200/tCO  carbon tax.₂

Mathematical Framework:

57. Sector-Specific Emissions Intensity:



1. Oil & Gas: 500 tCO /$M revenue₂
2. Manufacturing: 150 tCO /$M revenue₂
3. Real Estate: 50 tCO /$M revenue₂
4. Services: 20 tCO /$M revenue₂

58. Cost Shock:

59. CostΔ i = Emissionsintensity_i * Pcarbon * Revenuei

60. EBIT Impact:
61. EBITnew = EBITbaseline - CostΔ
62. PD Model (Merton):
63. PD = (-DD) DD = (ln(V/D) + (  - 0.5 ²)T) / ( T)Φ μ σ σ√

 Where DD is distance to default, updated with new EBIT.

64. Expected Loss:
65. EL = (i=1 to N) PD∑ i * LGDi * EADi

Required Analysis: - Calculate baseline PD for each sector (assume DDbaseline = 3.0) - Calculate 
stressed PD after carbon tax - Calculate incremental expected loss: EL = ELΔ stressed - ELbaseline - 
Determine required additional loan loss provisions

Extension: Model second-order effects where manufacturing firms pass through 50% of carbon costs
to customers, reducing demand by elasticity  = -0.8.ε

Case Study 7: Pension Fund Asset Allocation Under Climate Risk

Problem Statement: A $20B pension fund has 60% equities, 30% bonds, 10% alternatives. The 
fund must meet $800M annual liabilities for 30 years. Incorporate climate risk into asset allocation 
using mean-variance optimization.

Mathematical Framework:

66. Asset Returns (Climate-Adjusted):



67. Requities(T) = μeq + βeq * D(T) + σeq * εeq Rbonds = rf + σbonds * εbonds Ralternatives(T) = μalt + βalt * 
D(T) + σalt * εalt

 Where D(T) is the BHM damage function.

68. Temperature Scenarios:

1. Optimistic: T = 1.5°C, p = 0.2
2. Base: T = 2.5°C, p = 0.5
3. Pessimistic: T = 4.0°C, p = 0.3

69. Portfolio Optimization:

70. min σp² = w’ w subject to: E[RΣ p]  R≥ target w∑ i = 1, wi  0≥

 Where  includes climate-induced correlations.Σ

71. Funding Ratio:
72. FR(t) = Assets(t) / PV(Liabilities(t))

Required Analysis: - Calculate optimal weights under baseline (no climate risk) - Calculate optimal 
weights with climate risk - Simulate funding ratio paths (1,000 scenarios, 30 years) - Calculate 
probability of underfunding (FR < 0.8) at t=30

Extension: Add climate-linked bonds (green bonds) as a fourth asset class with return correlation -
0.3 to temperature. Recalculate optimal allocation.

Case Study 8: Sovereign Debt Sustainability Under Climate Stress

Problem Statement: A small island nation has debt/GDP ratio of 80%. GDP is $10B, growing at 
3%/year. Climate change threatens tourism (40% of GDP) and agriculture (15% of GDP). Model 
debt sustainability under RCP8.5.

Mathematical Framework:

73. GDP Impact:
74. GDP(t) = GDP0 * (1+g)^t * (1 - Dtourism(T(t)) * 0.4 - Dagriculture(T(t)) * 0.15)



 Where:

1. Dtourism(T) = 0.05 * T² (tourism highly temperature-sensitive)
2. Dagriculture(T) = 0.02 * T² (agriculture moderately sensitive)

75. Temperature Path (RCP8.5):
76. T(t) = 1.2 + 0.08t + 0.5 t * Z, Z ~ N(0,1)√
77. Debt Dynamics:
78. D(t+1) = D(t) * (1 + r) - PrimarySurplus(t) PrimarySurplus(t) =  * GDP(t) - G(t)τ

 Where  = 0.25 (tax rate), G(t) = 0.20 * GDP(t) (government spending).τ

79. Sustainability Condition: Debt is sustainable if Debt/GDP ratio remains < 100%.

Required Analysis: - Simulate debt/GDP ratio for 30 years (1,000 Monte Carlo paths) - Calculate 
probability of debt crisis (Debt/GDP > 100%) - Determine the required fiscal adjustment (increase 
in  or decrease in G) to maintain sustainability - Calculate the present value of expected climate τ

damages

Extension: Add the option for the country to issue catastrophe bonds to finance climate 
adaptation (cost $500M, reduces Dtourism and Dagriculture by 30%). Determine if this is financially 
optimal.

Case Study 9: Credit Rating Migration Under Transition Risk

Problem Statement: A credit rating agency must update ratings for a portfolio of 100 corporate 
bonds across various sectors. Model rating migration probabilities under NGFS “Net Zero 2050” 
scenario.

Mathematical Framework:

80. Rating Migration Matrix (Baseline): Standard transition matrix Pbaseline (8x8 for AAA to D).

81. Carbon Intensity Adjustment: For firm i with carbon intensity Ei (tCO /$M revenue):₂

82. Adjustmenti = -  * Eα i * Pcarbon(t)



 Where  = 0.0001 (calibrated parameter).α

83. Adjusted Credit Spread:
84. Spreadnew = Spreadbaseline * exp(Adjustmenti)
85. New Rating: Map spread to rating using empirical spread-rating relationship.

86. Portfolio Impact:

87. Value = (i=1 to 100) BondValueΔ ∑ i * (Spreadnew - Spreadbaseline) * Durationi

Required Analysis: - Calculate rating migration for each bond - Determine the percentage of bonds 
downgraded by 1, 2, 3+ notches - Calculate total portfolio value loss - Identify the sectors most 
affected

Extension: Model the feedback effect where rating downgrades increase borrowing costs, further 
impairing credit quality. Iterate until convergence.

Case Study 10: Equity Portfolio Climate Beta Estimation

Problem Statement: An equity portfolio manager holds 50 stocks across sectors. Estimate each 
stock’s “climate beta” (sensitivity to climate risk factors) and construct a climate-hedged portfolio.

Mathematical Framework:

88. Factor Model:
89. Ri = αi + βmarket * Rmarket + βclimate * Fclimate + εi

 Where Fclimate is a climate risk factor (e.g., carbon price changes).

90. Climate Beta Estimation: Use regression on historical data:
91. βclimate,i = Cov(Ri, Fclimate) / Var(Fclimate)
92. Climate-Hedged Portfolio: Construct portfolio with zero climate beta:
93. (i=1 to N) w∑ i * βclimate,i = 0 subject to: w∑ i = 1
94. Tracking Error:
95. TE = (Var(R√ portfolio - Rbenchmark))



Required Analysis: - Estimate climate betas for all 50 stocks - Identify stocks with highest positive 
and negative climate betas - Construct minimum-variance climate-neutral portfolio - Calculate the 
tracking error vs. market-cap weighted benchmark

Extension: Add a constraint that the portfolio must achieve at least 90% of benchmark return while
being climate-neutral. Solve the constrained optimization problem.

Part III: Corporate Financial Planning

Case Study 11: Capital Budgeting with Climate-Adjusted WACC

Problem Statement: A manufacturing firm is evaluating two projects: - Project A: Expand existing 
coal-based production ($200M investment, 10-year life) - Project B: Build new renewable-powered 
facility ($300M investment, 15-year life)

Determine which project to pursue, accounting for climate risk in the discount rate.

Mathematical Framework:

96. Standard WACC:
97. WACC = we * re + wd * rd * (1-T)
98. Climate Risk Premium:
99. rclimate = βclimate * λclimate

 Where λclimate is the market price of climate risk (estimated at 2% for high-carbon projects).

100.Climate-Adjusted WACC:
101.WACCclimate = WACC + rclimate

1. Project A: βclimate = 1.5 (high carbon intensity)
2. Project B: βclimate = -0.2 (renewable, benefits from transition)

102.Project NPV:
103.NPV = -I0 + (t=1 to T) CF∑ t / (1 + WACCclimate)^t



Required Analysis: - Calculate NPV for both projects using standard WACC (assume 8%) - 
Calculate NPV using climate-adjusted WACC - Determine which project is preferred under each 
approach - Calculate the break-even climate risk premium where project choice switches

Extension: Model the uncertainty in future carbon prices as a geometric Brownian motion and 
calculate the option value of delaying the decision by 2 years.

Case Study 12: Supply Chain Climate Risk Assessment

Problem Statement: An automotive manufacturer sources components from 200 suppliers across 30 
countries. 40% of suppliers are in regions with high physical climate risk (water stress, heat 
extremes). Model supply chain disruption risk.

Mathematical Framework:

104.Supplier Disruption Probability:
105. Pdisruption,i = Pbaseline * (1 +  * PhysicalRiskα i)

 Where PhysicalRiski is a composite index (0-1 scale).

106.Production Impact: If supplier i is disrupted, production loss = Criticality i * ProductionValue.

107.Total Expected Loss:

108. E[Loss] = (i=1 to 200) P∑ disruption,i * Criticalityi * ProductionValue
109.Value-at-Risk: Use Monte Carlo to simulate disruption scenarios and calculate 95% VaR.

Required Analysis: - Calculate expected annual loss from supply chain climate risk - Identify the 
top 10 suppliers contributing most to VaR - Model the benefit of diversifying suppliers (reducing 
concentration) - Calculate the optimal investment in supplier climate resilience

Extension: Model cascading failures where disruption of one supplier increases probability of 
disruption for dependent suppliers. Use network analysis to identify critical nodes.



Case Study 13: Real Estate Development Under Uncertain Regulation

Problem Statement: A developer is considering building a mixed-use development in a coastal area 
($500M investment, 5-year construction, 30-year operating life). There is uncertainty about future 
building codes requiring flood protection.

Mathematical Framework:

110.Regulatory Scenarios:

1. No new regulation: p = 0.3
2. Moderate regulation (require 1m protection): p = 0.5, cost = $50M
3. Strict regulation (require 2m protection): p = 0.2, cost = $120M

111.Decision Tree:

1. Build now without protection
2. Build now with 1m protection
3. Build now with 2m protection
4. Wait 2 years for regulatory clarity (opportunity cost = $30M)

112.Project Value:

113.V = (t=1 to 30) NOI(t) / (1+r)^t - I∑ 0 - Protectioncost

 Where NOI = $40M/year.

114.Expected Value:
115. E[V] =  p∑ scenario * Vscenario

Required Analysis: - Calculate expected value for each decision - Determine optimal strategy - 
Calculate the value of waiting (option value) - Perform sensitivity analysis on regulation 
probabilities

Extension: Model the case where regulation is announced gradually (Bayesian updating). Use 
dynamic programming to find the optimal stopping time for the investment decision.



Case Study 14: Mining Company Closure Liability Valuation

Problem Statement: A mining company has a site that will be depleted in 15 years. Closure and 
remediation costs are estimated at $200M in today’s dollars. Climate change may increase 
remediation costs due to extreme weather and water management challenges. Value the closure 
liability.

Mathematical Framework:

116.Baseline Closure Cost:
117.C0 = $200M
118.Climate Escalation:
119.C(T) = C0 * (1 +  * T)γ

 Where  = 0.15 (15% increase per °C of warming).γ

120.Temperature at Closure (t=15):
121. T(15) ~ N(μT, σT²)

 With μT = 2.0°C, σT = 0.5°C.

122.Present Value of Liability:
123. PV = E[C(T(15))] / (1+r)^15
124.Provision (IAS 37): Company must recognize provision = PV today.

Required Analysis: - Calculate expected closure cost at t=15 - Calculate present value of liability - 
Determine the additional provision needed vs. baseline ($200M) - Calculate 90% confidence 
interval for the liability

Extension: Model the option to accelerate closure to t=10 (avoiding 5 years of climate escalation) 
at an additional cost of $30M. Determine if early closure is optimal.

Case Study 15: Utility Company Generation Mix Optimization

Problem Statement: An electric utility must plan its generation mix for 2030-2050. Current mix: 
50% coal, 30% gas, 20% renewables. Model optimal transition path under carbon price uncertainty.



Mathematical Framework:

125.Generation Technologies: | Technology | CAPEX (¿kW ¿∨OPEX ¿/MWh) | Emissions 
(tCO /MWh) | Lifetime (years) | |————|————–|————–|₂
———————-|——————| | Coal | 2,000 | 25 | 0.9 | 40 | | Gas | 1,000
| 35 | 0.4 | 30 | | Solar | 1,200 | 0 | 0 | 25 | | Wind | 1,500 | 0 | 0 | 25 | | Battery | 
1,000/kWh | 5 | 0 | 15 |

126.Carbon Price Scenarios:

1. Low: P(t) = 50 * (1.05)^t
2. Medium: P(t) = 100 * (1.08)^t
3. High: P(t) = 200 * (1.12)^t

127.Optimization Problem:

128.min (t=2030 to 2050) [CAPEX(t) + OPEX(t) + CarbonCost(t)] / (1+r)^t subject to: - ∑
Capacity  Demand(t) + Reserve≥ margin - Renewableshare  Target(t) - Reliability constraints≥

129.Stochastic Programming: Use scenario tree with branching carbon prices.

Required Analysis: - Solve deterministic optimization for medium carbon price scenario - Solve 
stochastic optimization with all three scenarios (equal probability) - Calculate the value of the 
stochastic solution (VSS) - Determine optimal retirement schedule for coal plants

Extension: Add the constraint that the utility must achieve net-zero emissions by 2050. Determine 
the least-cost pathway and the incremental cost vs. unconstrained solution.

Part IV: Advanced Quantitative Techniques

Case Study 16: Climate Tipping Point Modeling with Regime-Switching

Problem Statement: Model the risk of Atlantic Meridional Overturning Circulation (AMOC) 
collapse, which would cause severe economic disruption in Europe. Use a regime-switching model 
to capture the discontinuity.

Mathematical Framework:



130.Two-Regime Model:

1. Regime 1 (Normal): GDP growth = 2.5%
2. Regime 2 (Post-collapse): GDP growth = -1.0%

131.Transition Probability:

132. P(Switch | T) = 1 / (1 + exp(- (T - Tα threshold)))

 Where Tthreshold = 3.5°C,  = 2.α

133.State Dynamics:
134. S(t+1) = S(t) if no switch S(t+1) = 2 if switch occurs
135.GDP Process:
136.GDP(t+1) = GDP(t) * (1 + gS(t+1) +  * σ εt)
137.Asset Value: European equity index value depends on GDP:
138.V(t) = k * GDP(t)

Required Analysis: - Simulate 10,000 paths of GDP and asset value over 50 years - Calculate the 
probability of regime switch by 2050, 2070, 2100 - Calculate expected asset value loss conditional
on switch occurring - Determine the “tipping point VaR”: the loss at 95% confidence

Extension: Model multiple tipping points (AMOC, Amazon rainforest, West Antarctic ice sheet) 
with correlation structure. Calculate joint probability of multiple tipping points.

Case Study 17: Optimal Carbon Tax Using DICE Model

Problem Statement: Using the DICE model framework, derive the optimal carbon tax trajectory that
maximizes discounted global welfare. Compare with the social cost of carbon (SCC).

Mathematical Framework:

139.Welfare Function:
140.W = (t=1 to T) [U(C(t)) * L(t)] / (1+ )^t∑ ρ

 Where U(C) = C^(1- )/(1- ) (CRRA utility), L(t) is population.η η



141.Production:
142.Q(t) = A(t) * K(t)^  * L(t)^(1- ) * (T(t))α α Ω

 Where (T) = 1/(1 + a *T²) is the damage function.Ω ₂

143.Capital Accumulation:
144.K(t+1) = (1- )*K(t) + I(t)δ

145.Consumption-Investment:
146.C(t) + I(t) + Abatement(t) = Q(t)
147.Climate Module:
148. T(t+1) = T(t) + ^(-1) * (F(t) - T(t)) F(t) = Fλ λ 2x  log (M(t)/M₂ pre-industrial) M(t+1) = M(t) + 

E(t) - Decay(M(t))
149.Optimization:
150.max W subject to all constraints Control variables: I(t), Abatement(t)
151.Optimal Carbon Tax:
152. *(t) = - W/ E(t) = SCC(t)τ ∂ ∂

Required Analysis: - Solve the optimization problem numerically (use Lagrangian method) - Derive
the optimal carbon tax path for 2025-2100 - Calculate the SCC for 2025, 2050, 2100 - Perform 
sensitivity analysis on discount rate (  = 0.5%, 1.5%, 3.0%)ρ

Extension: Add uncertainty in climate sensitivity ( ) and damage function (a ). Solve the stochastic λ ₂

optimization problem and compare optimal tax under uncertainty vs. certainty.

Case Study 18: Catastrophe Bond Pricing for Climate Risk

Problem Statement: An insurance company wants to issue a catastrophe bond to transfer hurricane 
risk. The bond pays 8% coupon but principal is forgiven if hurricane losses exceed $5B in a year. 
Price the bond accounting for climate change impacts on hurricane intensity.

Mathematical Framework:

153.Hurricane Loss Model: Annual losses L ~ Compound Poisson:



1. Frequency: N ~ Poisson( (t))λ

2. Severity: Xi ~ Pareto( , xα m(t))
154.Climate Adjustment:

155. (t) = λ λ0 * (1 + 0.02t) (frequency increase) xm(t) = xm,0 * (1 + 0.03t) (severity increase)
156.Trigger Probability:
157. P(L > $5B | t) = P( (i=1 to N(t)) X∑ i > $5B)
158.Bond Cash Flows:
159.CFt = Coupon if L  $5B CF≤ t = Coupon + Principal if L  $5B and t = Maturity CF≤ t = 0 if 

L > $5B (principal forgiven)
160.Bond Price:
161. P = (t=1 to T) E[CF∑ t] / (1+rf + spread)^t

Required Analysis: - Calculate trigger probability for each year (t=1 to 5, 5-year bond) - Determine
the fair spread above risk-free rate - Calculate expected loss to bondholders - Compare with 
traditional reinsurance pricing

Extension: Design a parametric trigger based on wind speed rather than actual losses. Determine the
optimal trigger level that minimizes basis risk while maintaining attractive pricing.

Case Study 19: Green Bond Premium Estimation

Problem Statement: A corporation can issue either conventional bonds or green bonds (proceeds 
used for renewable energy projects). Estimate the “greenium” (green bond premium) and determine 
optimal issuance strategy.

Mathematical Framework:

162.Bond Pricing:
163. Pconventional = (t=1 to T) C / (1+r∑ conventional)^t + Face / (1+rconventional)^T Pgreen = (t=1 to T) C / ∑

(1+rgreen)^t + Face / (1+rgreen)^T
164.Greenium:
165.Greenium = rconventional - rgreen



166. Investor Demand: Model two investor types:

1. ESG investors: Willing to accept lower yield (utility from green investment)
2. Conventional investors: Yield-focused only

167.DemandESG(r) = D0 * exp(-βESG * (r - rmin)) Demandconventional(r) = D0 * exp(-βconv * (r - rmin))
168.Market Clearing:
169. Supply = DemandESG(rgreen) + Demandconventional(rgreen)
170. Issuer Optimization:
171.max [Pgreen - Pconventional] - Certificationcost

Required Analysis: - Estimate greenium from market data (assume 15-25 bps) - Calculate break-
even certification cost - Determine optimal issuance size for green bonds - Model the impact of 
increasing ESG investor base on greenium

Extension: Add reputational risk where issuing green bonds commits the firm to emissions reduction
targets. Model the trade-off between lower funding cost and future carbon price exposure.

Case Study 20: Climate Stress Testing with Macro-Financial Linkages

Problem Statement: A central bank conducts a climate stress test on the banking system. Model the
transmission from climate scenarios to bank capital ratios through multiple channels.

Mathematical Framework:

172.Climate Scenarios: Use NGFS scenarios (Net Zero 2050, Delayed Transition, Current Policies).

173.Macro Model:

174.GDP(t) = GDP(t-1) * (1 + gbaseline + Climateimpact(t) + Transitionimpact(t)) Unemployment(t) = 
f(GDPgrowth(t)) Interestrates(t) = Taylorrule(Inflation(t), Outputgap(t))

175.Climate Impact:
176.Climateimpact(t) = -βphysical * PhysicalDamage(T(t)) Transitionimpact(t) = -βtransition * Carbonprice(t) * 

Carbonintensity_economy

177.Bank Balance Sheet:



1. Assets: Loans to various sectors
2. Liabilities: Deposits, wholesale funding
3. Capital: Equity

178.Credit Risk:

179. PDsector(t) = PDbaseline * exp(βsector * GDPgrowth(t) + γsector * Carbonprice(t))
180.Bank Losses:
181. Losses(t) = ∑sectors [EADsector * PDsector(t) * LGDsector]
182.Capital Ratio:
183.CAR(t) = (Capital(t-1) - Losses(t) + Earnings(t)) / RWA(t)

Required Analysis: - Simulate macro variables under each NGFS scenario - Calculate sector-specific
PDs under each scenario - Determine bank losses and capital ratios over 30 years - Identify which 
banks fail (CAR < 8%) under each scenario

Extension: Model second-round effects where bank failures reduce credit supply, further depressing 
GDP. Iterate until convergence to capture amplification effects.

Case Study 21: Biodiversity Loss and Agricultural Finance

Problem Statement: An agricultural lender has $5B in loans to farms that depend on pollination 
services. Climate change threatens bee populations, reducing crop yields. Model the credit risk.

Mathematical Framework:

184.Pollination Service Model:
185. Pollinationeffectiveness(T) = P0 * exp(-  * (T - Tα optimal)²)

 Where Toptimal = 15°C,  = 0.05.α

186.Crop Yield:
187.Yield(T) = Yieldbaseline * Pollinationeffectiveness(T) * Otherfactors(T)
188.Farm Revenue:
189.Revenue(t) = Yield(T(t)) * Price(t) * Area



190.Debt Service Coverage Ratio (DSCR):
191.DSCR(t) = (Revenue(t) - Operatingcosts) / Debtservice
192.Default Probability:
193. PD(t) = (-log(DSCR(t)) / )Φ σ

 Where  is the standard normal CDF.Φ

194.Portfolio Expected Loss:
195. EL = (i=1 to N) PD∑ i(t) * LGD * EADi

Required Analysis: - Simulate temperature paths (RCP4.5 and RCP8.5) - Calculate pollination 
effectiveness over time - Determine farm-level PDs for t=10, 20, 30 years - Calculate portfolio 
expected loss and 95% unexpected loss

Extension: Model the option for farms to invest in alternative pollination methods (managed bee 
colonies) at cost $50K/farm. Determine optimal adoption rate from lender’s perspective.

Case Study 22: Stranded Assets in Automotive Sector

Problem Statement: An auto manufacturer has $10B in assets dedicated to internal combustion 
engine (ICE) production. Model the stranding risk under accelerated electric vehicle (EV) adoption 
driven by climate policy.

Mathematical Framework:

196.EV Adoption Curve (Bass Diffusion Model):
197. dN/dt = (p + qN/M)  (M - N)

 Where:

1. N = cumulative EV adopters
2. M = market potential
3. p = innovation coefficient
4. q = imitation coefficient

198.Climate Policy Impact: Carbon price accelerates adoption:



199. q(Pcarbon) = qbaseline * (1 +  * Pβ carbon)
200. ICE Asset Utilization:
201.Utilization(t) = 1 - N(t)/M
202.Asset Value:
203.V(t) = (s=t to T) CF(s) * Utilization(s) / (1+r)^(s-t)∑
204.Stranded Asset Loss:
205. Loss = Vbaseline(0) - Vclimate(0)

Required Analysis: - Calibrate Bass model parameters (p=0.01, q=0.3 for EVs) - Simulate EV 
adoption under three carbon price scenarios - Calculate asset stranding dates (when utilization < 
50%) - Determine present value of stranded asset losses

Extension: Model the manufacturer’s option to repurpose ICE assets for EV production at 
conversion cost $2B. Use real options analysis to determine optimal conversion timing.

Case Study 23: Water Risk in Semiconductor Manufacturing

Problem Statement: A semiconductor fab requires 10 million gallons of water per day. It’s located 
in a region where climate change is increasing water stress. Model the operational and financial 
risk.

Mathematical Framework:

206.Water Availability Model:
207.W(t) = Wbaseline * (1 +  * P(t) -  * T(t))α β

 Where:

1. P(t) = precipitation anomaly
2. T(t) = temperature anomaly
3.  = 0.5 (precipitation sensitivity)α

4.  = 0.1 (temperature sensitivity)β

208.Water Stress Events: Water stress occurs when W(t) < Requirement.



209. P(Stress | t) = P(W(t) < 10M gallons)
210.Production Impact: During water stress, production reduced by:
211. Productionloss = min(1, (Requirement - W(t)) / Requirement)
212.Revenue Impact:
213.Revenueloss(t) = Productionloss(t) * Revenueper_day * Daysstressed

214.Mitigation Options:

1. Build water recycling facility: $500M, reduces requirement by 40%
2. Secure alternative water source: $200M, provides 5M gallons/day backup

215.NPV of Mitigation:

216.NPVmitigation = -Investment + (t=1 to 20) Avoided∑ losses(t) / (1+r)^t

Required Analysis: - Simulate water availability under RCP4.5 (1,000 scenarios, 20 years) - 
Calculate expected annual revenue loss - Calculate 95% VaR for revenue loss - Determine optimal 
mitigation strategy (NPV-maximizing)

Extension: Model the correlation between water stress at this fab and other fabs in the region. 
Calculate the portfolio effect for a company with 5 fabs in water-stressed regions.

Case Study 24: Climate Migration and Real Estate Markets

Problem Statement: Climate change is driving migration from high-risk coastal areas to inland 
cities. Model the impact on real estate prices in both origin and destination markets.

Mathematical Framework:

217.Migration Model:
218.Migrationrate(t) = M0 * [Riskorigin(t) / Riskdestination(t)]^γ

 Where  = 0.5 (elasticity of migration to risk differential).γ

219.Risk Indices:
220.Riskcoastal(t) = αSLR * SLR(t) + αhurricane * Hurricaneintensity(t) Riskinland(t) = αheat * Heatdays(t)
221.Housing Demand:



222.Demandcoastal(t) = Demand0 * (1 - Migrationrate(t)) Demandinland(t) = Demand0 * (1 + 
Migrationrate(t) * Populationratio)

223.Price Dynamics:
224. P(t+1) = P(t) * [Demand(t) / Supply]^ε

 Where  = 0.3 (price elasticity).ε

225.Portfolio Impact: Investor holds:

1. 60% coastal properties (current value $600M)
2. 40% inland properties (current value $400M)

226. Portfoliovalue(t) = 0.6 * Pcoastal(t) + 0.4 * Pinland(t)

Required Analysis: - Simulate migration rates under RCP4.5 and RCP8.5 - Calculate price 
trajectories for both markets (30 years) - Determine optimal portfolio rebalancing strategy - 
Calculate the cost of inaction (maintaining 60/40 allocation vs. optimal)

Extension: Add transaction costs (5% of value) and capital gains taxes (20%). Determine the 
optimal rebalancing frequency and thresholds.

Case Study 25: Integrated Assessment of Climate Risk for a Diversified Conglomerate

Problem Statement: A conglomerate has operations in: - Energy (30% of value): Oil & gas 
production - Manufacturing (25%): Automotive parts - Real Estate (20%): Commercial properties - 
Agriculture (15%): Food processing - Finance (10%): Insurance and lending

Conduct a comprehensive climate risk assessment across all divisions.

Mathematical Framework:

227.Division-Specific Risk Models:
228.Energy:

 Venergy(t) =  CF∑ energy(s) / (1 + r + βenergy * Pcarbon(s))^s

 Manufacturing:



 Vmanuf(t) =  CF∑ manuf(s) * (1 - Dsupply_chain(T(s))) / (1+r)^s

 Real Estate:

 VRE(t) =  NOI(s) * (1 - D∑ physical(T(s))) / (1+r)^s

 Agriculture:

 Vag(t) =  CF∑ ag(s) * (1 + (T(s)-Tβ₁ 0) + (T(s)-Tβ₂ 0)²) / (1+r)^s

 Finance:

 Vfin(t) =  (Premiums(s) - Losses(s, T(s))) / (1+r)^s∑

229.Correlation Structure: Model correlations between divisions:
230.  = [Σ ρij] where ρij = Corr(Vi, Vj)
231.Conglomerate Value:
232.Vtotal =  w∑ i * Vi

233.Climate VaR:
234.VaR95% = Vbaseline - V5th_percentile

235.Diversification Benefit:
236.Benefit =  VaR∑ i - VaRportfolio

Required Analysis: - Model each division’s value under three NGFS scenarios - Calculate division-
specific VaRs - Estimate correlation matrix (use historical data + climate adjustments) - Calculate 
portfolio-level Climate VaR - Quantify diversification benefit - Identify which division contributes 
most to portfolio risk

Extension: Determine the optimal divestment strategy. If the conglomerate must reduce climate risk 
by 40%, which division(s) should be sold to maximize remaining value?



Supplementary Advanced Problems

Problem 26: Dynamic Hedging of Climate Risk with Derivatives

Design a hedging strategy using weather derivatives and carbon price futures to minimize the 
climate risk of an agricultural portfolio. Derive the optimal hedge ratio and calculate the hedging 
effectiveness.

Problem 27: Climate Risk in Mergers & Acquisitions

A company is acquiring a target with significant climate risk exposure. Develop a framework to 
adjust the acquisition price based on climate risk. Include earnout provisions tied to climate 
outcomes.

Problem 28: Optimal Climate Disclosure Strategy

Model the trade-off between transparency (full climate risk disclosure) and strategic ambiguity. Use 
game theory to determine the Nash equilibrium disclosure level in a competitive market.

Problem 29: Central Bank Climate Stress Testing Methodology

Design a comprehensive stress testing framework for a central bank. Include scenario generation, 
transmission mechanisms, and systemic risk amplification.

Problem 30: Climate Risk Transfer through Insurance-Linked Securities

Price a portfolio of catastrophe bonds, sidecars, and industry loss warranties. Optimize the capital 
structure to minimize cost of risk transfer.



Chapter 10: Survey of Existing Climate-Economic Models
This chapter provides a comprehensive mathematical treatment of the major climate-economic 
models used in research and practice. Each model is presented with its complete mathematical 
structure, key assumptions, calibration parameters, and applications to financial risk assessment.

10.1 The DICE Model (Dynamic Integrated Climate-Economy)

10.1.1 Model Overview

The DICE model, developed by William Nordhaus (2017 Nobel laureate), is the most influential 
integrated assessment model (IAM) for climate-economic analysis. It combines a Ramsey-Cass-
Koopmans neoclassical growth model with a simplified climate module.

10.1.2 Mathematical Structure

Economic Module:

The economy is represented by a Cobb-Douglas production function with climate damages:
Q(t) = (t) * A(t) * K(t)^  * L(t)^(1- )Ω γ γ

Where: - Q(t) = Gross output at time t - (t)Ω  = Damage function (fraction of output remaining 
after climate damages) - A(t) = Total factor productivity - K(t) = Capital stock - L(t) = Labor force
(population) - γ = Capital share of output (typically 0.30)

Damage Function:

The quadratic damage function relates temperature to economic damages:
(T) = 1 / (1 + *T + *T²)Ω π₁ π₂

Calibration (DICE-2016R2): -  = 0 -  = 0.00236π₁ π₂

This implies: - 2°C warming  0.9% GDP loss - 3°C warming  2.1% GDP loss - 5°C warming→ →
 5.5% GDP loss→

Capital Accumulation:



K(t+1) = (1 - δK) * K(t) + I(t)

Where δK = 0.10 (10% annual depreciation).

Resource Constraint:
Q(t) = C(t) + I(t) + (t) * Q(t)Λ

Where: - C(t) = Consumption - I(t) = Investment - (t)Λ  = Abatement cost function

Abatement Cost Function:
( , t) = (t) * (t)^Λ μ θ₁ μ θ₂

Where: - (t)μ  = Emissions control rate (0 = no control, 1 = full control) - (t)θ₁  = Cost coefficient 
(declining over time due to technological progress) - θ₂ = Cost exponent (typically 2.6)

Climate Module:

DICE uses a two-layer energy balance model:

TAT(t+1) = TAT(t) +  * [F(t) - *Tξ₁ ξ₂ AT(t) - *(Tξ₃ AT(t) - TLO(t))]
TLO(t+1) = TLO(t) +  * [Tξ₄ AT(t) - TLO(t)]

Where: - TAT = Atmospheric temperature anomaly (°C) - TLO = Lower ocean temperature anomaly 
(°C) - F(t) = Radiative forcing (W/m²) -  = Speed of adjustment for atmosphere (0.1005) -  = ξ₁ ξ₂

Feedback parameter (1.17 W/m²/°C) -  = Heat transfer coefficient (0.088 W/m²/°C) -  = Speed ξ₃ ξ₄

of adjustment for ocean (0.025)

Radiative Forcing:

F(t) = F2x * log (M₂ AT(t) / MAT,1750) + FEX(t)

Where: - F2x = Forcing from doubling CO  (3.6813 W/m²) - M₂ AT(t) = Atmospheric CO  ₂
concentration (GtC) - MAT,1750 = Pre-industrial concentration (588 GtC) - FEX(t) = Exogenous forcing
from other GHGs

Carbon Cycle:

Three-reservoir model:



MAT(t+1) = E(t) + *Mφ₁₁ AT(t) + *Mφ₂₁ UP(t)
MUP(t+1) = *Mφ₁₂ AT(t) + *Mφ₂₂ UP(t) + *Mφ₃₂ LO(t)
MLO(t+1) = *Mφ₂₃ UP(t) + *Mφ₃₃ LO(t)

Where: - MAT = Atmospheric carbon (GtC) - MUP = Upper ocean/biosphere carbon (GtC) - MLO = 
Deep ocean carbon (GtC) - E(t) = Industrial emissions (GtC/year) - φij = Transfer coefficients 
(calibrated to carbon cycle models)

Emissions:

E(t) = (t) * (1 - (t)) * Q(t) + Eσ μ land(t)

Where: - (t) = Emissions intensity (tCO /$ of output, declining over time) - Eσ ₂ land(t) = Exogenous 
land-use emissions

Objective Function:

The social planner maximizes discounted utility:
W = (t=0 to T) [U(C(t), L(t)) / (1+ )^t]∑ ρ

Where:
U(C, L) = L * [C/L]^(1- ) / (1- )α α

(a) ρ = Pure rate of time preference (0.015)
(b) α = Elasticity of marginal utility (1.45)

Optimal Control:

The model solves for optimal paths of (t) and s(t) = I(t)/Q(t) (savings rate) that maximize W μ
subject to all constraints.

10.1.3 Social Cost of Carbon

The Social Cost of Carbon (SCC) is the marginal damage from an additional ton of CO :₂
SCC(t) = - W/ E(t) = (s=t to T) [ Q(s)/ E(t)] * [ U/ C(s)] / (1+ )^(s-t)∂ ∂ ∑ ∂ ∂ ∂ ∂ ρ



DICE-2016R2 Calibration: - SCC(2020)  $37/tCO  (at 3% discount rate) - SCC grows at ≈ ₂
approximately 2-3% per year

10.1.4 Application to Financial Risk

Asset Valuation:

For a firm with emissions Efirm, the climate-adjusted value is:

Vclimate = (t=1 to T) [CF∑ t - SCC(t)*Efirm(t)] / (1+r)^t

Stranded Asset Calculation:

Assets are stranded when carbon price exceeds profitability threshold:

Pcarbon(t) > (Revenue - OpEx) / Emissions

Using DICE’s optimal carbon price path, determine the stranding date t*.

10.2 The FUND Model (Climate Framework for Uncertainty, Negotiation and 
Distribution)

10.2.1 Model Overview

FUND, developed by Richard Tol, is a disaggregated IAM with detailed sectoral and regional 
damage functions. It emphasizes uncertainty quantification through Monte Carlo analysis.

10.2.2 Mathematical Structure

Regional Structure:

FUND divides the world into 16 regions, each with its own economic and climate module.

Damage Function:

Unlike DICE’s aggregate function, FUND models damages by sector:

Dtotal,r(t) = (sectors) D∑ sector,r(Tr(t), Yr(t), t)

Sectoral Damage Functions:



237.Agriculture:
238.Dag,r = αag,r * Tr + βag,r * Tr² + γag,r * Yr * Tr

 Where Yr is income per capita in region r.

239.Sea Level Rise:
240.DSLR,r = αSLR,r * (SLR(t) / (1 + βSLR,r * SLR(t)))

 With SLR modeled as:

 dSLR/dt = αthermal * T + αice * max(0, T - Tthreshold)

241.Health (Heat Mortality):
242.Dhealth,r = αhealth,r * Populationr * (Tr - Toptimal,r)² / Yr^ε

 Where  = 0.5 (income elasticity of adaptation).ε

243.Energy (Cooling/Heating):
244.Denergy,r = αcool,r * CDD(Tr) - αheat,r * HDD(Tr)

 Where CDD = cooling degree days, HDD = heating degree days.

245.Ecosystems:
246.Deco,r = αeco,r * (1 - exp(-βeco,r * Tr))
247.Extreme Weather:
248.Dextreme,r = αextreme,r * Tr^γextreme

 With γextreme  2-3 (super-linear relationship).≈

Total Damages:

Dtotal(t) = (r=1 to 16) w∑ r * Dtotal,r(t)

Where wr is the economic weight of region r (typically GDP share).

Uncertainty Quantification:



FUND specifies probability distributions for key parameters:

Parameter Distribution Mean
Std 
Dev

Climate Sensitivity Log-normal 3.0°C 1.5°C
αag Normal -0.04 0.02
βag Normal -0.0014 0.0007
Discount rate Triangular 1.0% 0.5%

Monte Carlo Simulation:

Run N simulations (typically 10,000):

For i = 1 to N:
    Draw parameters from distributions
    Solve model  SCC→ i

End

SCCmean = mean(SCCi)
SCC95% = 95th percentile(SCCi)

10.2.3 Equity Weighting

FUND allows for equity weighting across regions:

Wequity = (r) (t) [U∑ ∑ r(Cr(t)) * (Yref / Yr(t))^ ] / (1+ )^tη ρ

Where: -  = Equity weight parameter (0 = no weighting, 1 = full weighting) - Yη ref = Reference 
income level

This increases the weight on damages in poor regions.

10.2.4 Application to Financial Risk

Sectoral Risk Assessment:



For a portfolio with exposures to different sectors:

Riskportfolio = (sectors) w∑ sector * E[Dsector]

Regional Diversification:

Calculate correlation matrix of regional damages:

Corr(Dr, Ds) = Cov(Dr, Ds) / (σr * σs)

Use this to optimize regional portfolio allocation.

10.3 The PAGE Model (Policy Analysis of the Greenhouse Effect)

10.3.1 Model Overview

PAGE, developed by Chris Hope at Cambridge, emphasizes fat-tailed risk and discontinuities 
(tipping points). It uses probabilistic rather than deterministic modeling.

10.3.2 Mathematical Structure

Damage Function:

PAGE uses a power function with regional variation:

Dr(T) = (ar / Ttol,r) * T^br

Where: - Ttol,r = Tolerable temperature for region r (triangular distribution: 2-3°C) - ar = Damage 
coefficient (triangular: 0.5-2.5%) - br = Damage exponent (triangular: 1.5-3.0)

Discontinuity (Tipping Point):

Additional damage if temperature exceeds threshold:

Ddiscontinuity = Ddisc * I(T > Tthreshold)

Where: - I(·) = Indicator function - Tthreshold ~ Uniform(2.5, 4.5°C) - Ddisc ~ Uniform(5%, 25% of 
GDP)

Total Damage:



Dtotal = Dcontinuous + Ddiscontinuity

Climate Sensitivity:

PAGE uses a fat-tailed distribution:
CS ~ Log-normal(  = log(2.5),  = 0.5)μ σ

This gives: - Median CS = 2.5°C - 95th percentile CS  6°C - Long right tail (captures low-≈
probability, high-impact outcomes)

Discounting:

PAGE allows for time-varying discount rates:

r(t) = r0 * exp(-  * t)λ

Where  = 0.01 (discount rate declines over time, increasing weight on future).λ

10.3.3 Probability Distributions
Parameter Distribution Parameters
Climate Sensitivity Log-normal =log(2.5), =0.5μ σ

Damage exponent Triangular (1.5, 2.25, 3.0)
Tipping point threshold Uniform (2.5, 4.5°C)
Tipping point impact Uniform (5%, 25% GDP)
Discount rate Triangular (0.5%, 1.0%, 

1.5%)

10.3.4 Expected Value Calculation
E[SCC] =  SCC(CS, b, T∫∫∫ threshold) * f(CS) * g(b) * h(Tthreshold) dCS db dTthreshold

Computed via Monte Carlo:

SCCmean = (1/N) * (i=1 to N) SCC∑ i

PAGE Results:



(a) Mean SCC(2020)  $100/tCO  (higher than DICE due to fat tails)≈ ₂
(b) 95th percentile SCC  $400/tCO≈ ₂
(c) Strong sensitivity to discount rate and tipping point parameters

10.3.5 Application to Financial Risk

Tail Risk Measurement:

PAGE is ideal for calculating tail risk metrics:

CVaR95% = E[Loss | Loss > VaR95%]

Scenario Analysis:

Generate scenarios from PAGE distributions: - Optimistic (10th percentile): CS=1.8°C, no tipping, 
SCC=$30 - Base (50th percentile): CS=2.5°C, no tipping, SCC=$100 - Pessimistic (90th 
percentile): CS=4.5°C, tipping, SCC=$300

10.4 The REMIND Model (Regional Model of Investments and Development)

10.4.1 Model Overview

REMIND, developed by PIK Potsdam, is a technology-rich IAM focusing on energy system 
transformation. It uses intertemporal optimization to find cost-minimizing pathways to climate 
targets.

10.4.2 Mathematical Structure

Production Function:

Nested CES (Constant Elasticity of Substitution) structure:

Y = [αK * K^  + ρ αL * L^  + ρ αE * E^ ]^(1/ )ρ ρ

Where: - E = Energy aggregate - ρ = Substitution parameter (related to elasticity  = 1/(1- ))σ ρ

Energy Aggregate:

Further nested CES:



E = [αfossil * Efossil^ρE + αrenewable * Erenewable^ρE]^(1/ρE)

Technology Portfolio:

Energy is produced by a portfolio of technologies:

Efossil = (tech  {coal, gas, oil}) E∑ ∈ tech

Erenewable = (tech  {solar, wind, hydro, nuclear}) E∑ ∈ tech

¿kW ¿−¿∗OPE X t ech∗¿=Operatingcost ¿Each technology has: - CAPEXtech = Capital cost (/MWh) 
- Emissionstech = Emissions intensity (tCO /MWh) - Capacity₂ factor_tech = Utilization rate

Optimization Problem:

min (t=1 to T) (tech) [CAPEX∑ ∑ tech * NewCapacitytech(t) + OPEXtech * Generationtech(t)] / (1+r)^t

subject to:
- Energy demand met: (tech) Generation∑ tech(t)  Demand(t)≥

- Capacity constraint: Generationtech(t)  Capacity≤ tech(t) * CFtech

- Capacity evolution: Capacitytech(t+1) = (1-δtech)*Capacitytech(t) + NewCapacitytech(t)
- Emissions constraint: (tech) Emissions∑ tech * Generationtech(t)  Budget(t)≤

- Non-negativity: All variables  0≥

Carbon Budget:

For a 2°C target:

(t=2020 to 2100) Emissions(t)  Budget∑ ≤ 2C  1,000 GtCO≈ ₂

Endogenous Technical Change:

Technology costs decline with cumulative deployment (learning-by-doing):

CAPEXtech(t) = CAPEXtech,0 * (CumulativeCapacitytech(t) / CumulativeCapacitytech,0)^(-LRtech)

Where: - LRtech = Learning rate (typically 10-20% for solar, wind)



10.4.3 REMIND Calibration

Technology
CAPEX 
(2020) Learning Rate Emissions

Coal $2,000/kW 5% 0.9 
tCO /MWh₂

Gas $1,000/kW 5% 0.4 
tCO /MWh₂

Solar PV $1,200/kW 20% 0
Wind $1,500/kW 15% 0
Nuclear $5,000/kW 2% 0

10.4.4 Solution Method

REMIND is formulated as a Mixed Complementarity Problem (MCP) and solved using PATH 
solver. The solution provides: - Optimal technology deployment schedule - Shadow price of carbon 
(marginal cost of emissions reduction) - Total system cost

10.4.5 Application to Financial Risk

Stranded Asset Identification:

Technologies are stranded when their levelized cost exceeds the market price:

LCOEtech(t) = [CAPEXtech * CRF + OPEXtech + Emissionstech * Pcarbon(t)] / CFtech

Stranded if: LCOEtech(t) > Pelectricity(t)

Transition Risk Quantification:

For a utility with capacity mix {Capcoal, Capgas, Caprenewable}:

TransitionRisk = (tech) Cap∑ tech * max(0, LCOEtech - Pelectricity) * Lifetimetech



10.5 NGFS Climate Scenarios

10.5.1 Scenario Framework

The Network for Greening the Financial System (NGFS) provides standardized scenarios for 
financial sector stress testing. These scenarios are generated using multiple IAMs (primarily 
REMIND, MESSAGE, GCAM).

10.5.2 Scenario Typology

Orderly Scenarios: 1. Net Zero 2050: Immediate policy action, limiting warming to 1.5°C - Carbon
price: $100/tCO  (2030)  $600/tCO  (2050) - Renewable share: 70% by 2050 - GDP impact: -₂ → ₂
1% to -3% vs. baseline

2. Below 2°C: Gradual transition, limiting warming to 1.7°C
1. Carbon price: $50/tCO  (2030)  $300/tCO  (2050)₂ → ₂
2. Renewable share: 60% by 2050
3. GDP impact: -0.5% to -2% vs. baseline

Disorderly Scenarios: 3. Delayed Transition: Policy action delayed until 2030, then rapid catch-up -
Carbon price: $0 (2020-2030), then $200/tCO  (2035)  $1,000/tCO  (2050) - Renewable share: ₂ → ₂
75% by 2050 (rapid deployment) - GDP impact: -3% to -5% vs. baseline (higher transition costs)

4. Divergent Net Zero: Uncoordinated policies across regions
1. Carbon price varies by region: $50-$500/tCO  (2050)₂
2. Trade tensions, carbon border adjustments
3. GDP impact: -2% to -4% vs. baseline

Hot House World: 5. NDCs: Only current nationally determined contributions implemented - 
Carbon price: $25/tCO  (2050) (weak policy) - Warming: 2.5-3.0°C by 2100 - Physical damages: ₂
-5% to -10% GDP by 2100

6. Current Policies: No new policies beyond those already in place
1. Carbon price: $10/tCO  (2050)₂



2. Warming: 3.0-3.5°C by 2100
3. Physical damages: -10% to -20% GDP by 2100

10.5.3 Mathematical Specification

Carbon Price Path (Net Zero 2050):

Pcarbon(t) = P0 * exp(rcarbon * (t - 2020))

Where: - P0 = $75/tCO  (2020) - r₂ carbon = 0.08 (8% annual growth)

Temperature Path:

T(t) = T2020 + TΔ scenario * [1 - exp(-  * (t - 2020))]λ

Where: - T2020 = 1.2°C - TΔ scenario = 0.3°C (Net Zero), 0.5°C (Below 2°C), 1.8°C (Current Policies) 
-  = 0.02 (convergence rate)λ

GDP Impact:

GDP(t) = GDPbaseline(t) * (1 - Dtransition(t) - Dphysical(t))

Where: - Dtransition(t) = αtrans * Pcarbon(t) * Carbonintensity(t) - Dphysical(t) = βphys * T(t)²

10.5.4 Application to Financial Stress Testing

Bank Loan Portfolio:

For each sector s:

PDs(t) = PDbaseline,s * exp(βs,trans * Pcarbon(t) + βs,phys * T(t))

Expected Loss:

EL(t) = (s) EAD∑ s * PDs(t) * LGDs

Capital Requirement:

Capitalrequired(t) = max(s scenarios) EL∈ s(t) * 1.5



10.6 Comparison of Models

10.6.1 Key Differences
Feature DICE FUND PAGE REMIND
Regions 1 (global) 16 8 21
Sectors Aggregate 8 Aggregate Energy-detailed
Damage Function Quadratic Sectoral Power + Tipping Exogenous
Uncertainty Deterministic Monte Carlo Monte Carlo Deterministic
Time Horizon 2100 2300 2200 2100
Time Step 5 years 1 year 1 year 5 years
Climate Module 2-box 2-box 1-box Exogenous
SCC (2020) $37/tCO₂ $50/tCO₂ $100/tCO₂ N/A (policy-driven)

10.6.2 Model Selection Guidance

Use DICE when: - Need simple, transparent model - Focus on optimal policy (carbon tax) - Global
aggregate analysis sufficient

Use FUND when: - Regional/sectoral detail required - Uncertainty quantification critical - Equity 
considerations important

Use PAGE when: - Tail risk and tipping points key concern - Fat-tailed distributions needed - 
Precautionary approach justified

Use REMIND when: - Energy system transformation focus - Technology portfolio optimization - 
Feasibility of climate targets

Use NGFS scenarios when: - Financial sector stress testing - Standardized scenarios required - 
Regulatory compliance (central banks)



10.7 Advanced Topics

10.7.1 Meta-Analysis of IAMs

Combining results from multiple models:

SCCensemble = (m=1 to M) w∑ m * SCCm

Where weights wm can be: - Equal weights: wm = 1/M - Performance-based: wm  (1 / RMSE∝ m) - 
Bayesian: wm  P(Data | Model∝ m)

10.7.2 Emulators and Surrogate Models

For computational efficiency, build statistical emulators:

SCC  f(CS, Discount≈ rate, Damageparameters) + ε

Using Gaussian Process regression or neural networks.

10.7.3 Recursive Dynamic Equilibrium

Some advanced IAMs (e.g., WITCH) solve for Nash equilibrium in a game-theoretic framework:

max _rμ  Wr(μr, μ-r)

Where each region r optimizes its own welfare given other regions’ strategies.

10.8 Supplementary Problems
249.Calibrate DICE damage function to match the IPCC AR6 damage estimates. What values of 

 and  are required?π₁ π₂

250.Decompose FUND’s SCC into contributions from each damage sector. Which sector 
dominates?

251.Calculate the probability in PAGE that damages exceed 10% of GDP by 2100.

252.Solve REMIND for a 1.5°C target with and without carbon capture and storage (CCS). How 
much does CCS reduce total system cost?



253.Compare NGFS scenarios: Calculate the stranded asset value for a coal power plant under 
“Net Zero 2050” vs. “Current Policies.”

254.Sensitivity analysis: How does DICE’s SCC change when climate sensitivity increases from 
3.0°C to 4.5°C?

255.Regional equity: Using FUND, calculate the SCC with equity weighting ( =1) vs.η  without 
( =0). How much higher is the equity-weighted SCC?η

256.Tipping point impact: In PAGE, what is the expected value of damages conditional on a 
tipping point occurring?

257.Technology learning: In REMIND, how much does solar PV cost decline if cumulative 
deployment doubles? Triples?

258.Model ensemble: Calculate a weighted average SCC using DICE (weight 0.3), FUND (weight 
0.4), and PAGE (weight 0.3). Justify the weights.
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Appendices

Appendix A: Mathematical Notation and Conventions

A.1 General Notation

Scalars: - Lowercase italic letters: t (time), r (rate), T (temperature) - Greek letters: , , , , , ,α β γ δ ε λ

, , , μ σ ρ τ

Vectors: - Lowercase bold letters: x, ,  - Dimension indicated by subscript when necessary: xμ β n

 ∈ ℝⁿ

Matrices: - Uppercase bold letters: A, Σ, Ω - Identity matrix: I - Transpose: A  or ᵀ A’

Random Variables: - Uppercase italic letters: X, Y, Z - Stochastic processes: Wt, Bt (Brownian 
motion)

A.2 Operators and Functions

Statistical Operators: - E[·] = Expectation operator - Var[·] = Variance operator - Cov[·,·] = 
Covariance operator - Corr[·,·] = Correlation coefficient - Pr(·) or P(·) = Probability - (·) = Φ

Standard normal cumulative distribution function - (·) = Standard normal probability density φ

function

Calculus: - f/ x = Partial derivative of f with respect to x - df/dx = Total derivative - f = ∂ ∂ ∇

Gradient vector -  = Integral -  = Summation - lim = Limit∫ ∑

Special Functions: - ln(·) = Natural logarithm (base e) - log(·) = Logarithm (base 10 unless 
specified) - log (·) = Logarithm base 2 - exp(·) = Exponential function (e^·) - max(·,·) = Maximum ₂
- min(·,·) = Minimum

A.3 Financial Variables
Symbol Description Units
V Asset value $ or local currency



CF Cash flow $ or local currency
r Discount rate / risk-free rate Decimal (e.g., 0.05 = 

5%)
rf Risk-free rate Decimal
WACC Weighted average cost of capital Decimal
NPV Net present value $
IRR Internal rate of return Decimal
PV Present value $
FV Future value $
Q Output / production $ or physical units
K Capital stock $
I Investment $
C Consumption $
Y Income / GDP $
L Labor / population Persons or person-years
A Total factor productivity Dimensionless

A.4 Risk Metrics
Symbol Description Units
VaRα Value-at-Risk at confidence level α $
ESα or 
CVaRα

Expected Shortfall / Conditional VaR $

σ Standard deviation / volatility $ or %
²σ Variance $² or %²
β Beta (systematic risk) Dimensionless
α Alpha (excess return) % or $
ρ Correlation coefficient Dimensionless [-1,1]



A.5 Climate Variables
Symbol Description Units
T Temperature anomaly °C above pre-industrial
TAT Atmospheric temperature °C
TLO Lower ocean temperature °C
F Radiative forcing W/m²
F2x Forcing from CO  doubling₂ W/m²
λ Climate feedback parameter W/m²/K
ECS Equilibrium climate sensitivity °C
TCR Transient climate response °C
M Carbon mass / concentration GtC or ppm
Matm Atmospheric carbon GtC
C CO  concentration₂ ppm
E Emissions GtCO /year or GtC/year₂

SLR Sea level rise meters
P Precipitation mm/year

A.6 Damage Functions
Symbol Description Units
D(T) Damage function Fraction of GDP 

lost
(T)Ω Output remaining after damages Dimensionless [0,1]

π Damage coefficient Various
β Temperature sensitivity Various



A.7 Stochastic Processes

Brownian Motion: - Wt or Bt = Standard Brownian motion - dWt = Increment of Brownian 
motion - E[dWt] = 0 - Var[dWt] = dt

Stochastic Differential Equations: - dXt = (Xμ t, t)dt + (Xσ t, t)dWt -  = Drift coefficient -  = μ σ

Diffusion coefficient

Geometric Brownian Motion: - dSt = Sμ t dt + Sσ t dWt - St = Asset price at time t

A.8 Probability Distributions

Normal Distribution: - X ~ N( , ²) - PDF: f(x) = (1/( (2 ))) exp(-(x- )²/(2 ²))μ σ σ√ π μ σ

Log-Normal Distribution: - X ~ LN( , ²) - If ln(X) ~ N( , ²), then X ~ LN( , ²)μ σ μ σ μ σ

Uniform Distribution: - X ~ U(a, b) - PDF: f(x) = 1/(b-a) for x  [a,b]∈

Triangular Distribution: - X ~ Tri(a, b, c) where a  b  c - Mode at b≤ ≤

Pareto Distribution: - X ~ Pareto( , xα m) - Used for extreme events / tail risk

Appendix B: Probability Distributions Used in Climate Finance

B.1 Normal Distribution

Application: General uncertainty in parameters, returns, errors

Parameters: -  = mean - ² = varianceμ σ

Properties: - Symmetric around mean - 68% of mass within ±1  - 95% within ±1.96  - 99% σ σ
within ±2.58σ

Generation: Box-Muller transform or inverse CDF method

B.2 Log-Normal Distribution

Application: Asset prices, positive-only variables

Parameters: -  = mean of log(X) - ² = variance of log(X)μ σ



Properties: - Always positive - Right-skewed - E[X] = exp(  + ²/2) - Var[X] = (exp( ²) - 1) μ σ σ
exp(2  + ²)μ σ

Generation: X = exp(Y) where Y ~ N( , ²)μ σ

B.3 Triangular Distribution

Application: Expert elicitation, scenario analysis

Parameters: - a = minimum - b = mode (most likely) - c = maximum

Properties: - Simple to specify (min, mode, max) - Mean = (a + b + c)/3 - Used in PAGE model 
for damage parameters

B.4 Uniform Distribution

Application: Complete uncertainty, tipping point thresholds

Parameters: - a = lower bound - b = upper bound

Properties: - All values equally likely - Mean = (a + b)/2 - Variance = (b - a)²/12

B.5 Pareto Distribution

Application: Extreme events, catastrophe losses

Parameters: -  = shape parameter (tail index) - xα m = scale parameter (minimum value)

Properties: - Heavy-tailed (  < 2  infinite variance) - Power law: P(X > x)  x^(- ) - Used in α → ∝ α

insurance for large losses

PDF: f(x) = (  xα m^ ) / x^( +1) for x  xα α ≥ m

B.6 Compound Poisson Distribution

Application: Aggregate losses from multiple events

Structure: - N ~ Poisson( ) = number of events - Xλ i ~ F = severity of each event - S = (i=1 ∑

to N) Xi = total loss



Properties: - E[S] =  E[X] - Var[S] =  E[X²] - Used for hurricane losses, operational riskλ λ

Appendix C: Numerical Methods and Algorithms

C.1 Monte Carlo Simulation Algorithm
Algorithm: Climate Value-at-Risk Calculation

Input:
  - N = number of simulations
  - T = time horizon (years)
  - Parameter distributions

Output:
  - VaRα = Value-at-Risk at confidence level α
  - ESα = Expected Shortfall

Procedure:
  1. Initialize results array: V[1..N]
  
  2. For i = 1 to N:
       a. Draw climate parameters:
          - CS ~ LogNormal(μCS, σCS)  // Climate sensitivity
          -  ~ Normal(λ μλ, σλ)         // Feedback parameter
          
       b. Draw economic parameters:
          -  ~ Normal(β μβ, σβ)         // Damage coefficient
          - r ~ Uniform(rmin, rmax)    // Discount rate
          
       c. Simulate temperature path:
          For t = 1 to T:
              T[t] = T[t-1] + (F[t]/  - T[t-1])/  + λ τ σT * ( t) * Z[t]√ Δ



              where Z[t] ~ N(0,1)
          
       d. Calculate damages:
          For t = 1 to T:
              D[t] =  * T[t] +  * T[t]²β₁ β₂

          
       e. Compute cash flows:
          For t = 1 to T:
              CF[t] = CFbaseline[t] * (1 - D[t])
          
       f. Calculate present value:
          V[i] = (t=1 to T) CF[t] / (1+r)^t∑
  
  3. Sort results: Vsorted = sort(V)
  
  4. Calculate VaR:
     indexVaR = floor((1- ) * N)α

     VaRα = Vbaseline - Vsorted[indexVaR]
  
  5. Calculate ES:
     ESα = Vbaseline - mean(Vsorted[1..indexVaR])
  
  6. Return VaRα, ESα

C.2 Finite Difference Method for PDEs
Algorithm: Implicit Finite Difference for Climate-Adjusted Option Pricing

Input:
  - Smax = maximum asset price
  - Tmax = time to maturity



  - NS = number of space steps
  - NT = number of time steps
  - (t) = time-dependent volatilityσ
  - r = risk-free rate
  - K = strike price

Output:
  - V(S,0) = option value today

Procedure:
  1. Initialize grid:
     S = SΔ max / NS

     t = TΔ max / NT

     S[i] = i * S for i = 0 to NΔ S

     t[j] = j * t for j = 0 to NΔ T

  
  2. Set terminal condition (European call):
     For i = 0 to NS:
         V[i, NT] = max(S[i] - K, 0)
  
  3. Set boundary conditions:
     V[0, j] = 0 for all j  // Out of money
     V[NS, j] = Smax - K * exp(-r*(Tmax - t[j]))  // Deep in money
  
  4. Build tridiagonal matrix for each time step:
     For j = NT-1 down to 0:
         σj = (t[j])  // Time-dependent volatilityσ
         
         For i = 1 to NS-1:
             a[i] = -0.5 * t * (Δ σj² * i² - r * i)



             b[i] = 1 + t * (Δ σj² * i² + r)
             c[i] = -0.5 * t * (Δ σj² * i² + r * i)
         
         Solve tridiagonal system:
         A * V[:,j] = V[:,j+1]
         where A is tridiagonal with diagonals (a, b, c)
  
  5. Return V[:,0] = option values at t=0

C.3 Sensitivity Analysis: Finite Difference Approximation
Algorithm: Numerical Sensitivity (Greek) Calculation

Input:
  - f(x) = function to differentiate
  - x  = point of evaluation₀
  - h = step size (default: 0.01)

Output:
  - df/dx|x=x₀ = numerical derivative

Procedure:
  1. Central difference (most accurate):
     df/dx  (f(x  + h) - f(x  - h)) / (2h)≈ ₀ ₀
  
  2. Forward difference (if x  - h invalid):₀
     df/dx  (f(x  + h) - f(x )) / h≈ ₀ ₀
  
  3. Second derivative (for convexity):
     d²f/dx²  (f(x  + h) - 2f(x ) + f(x  - h)) / h²≈ ₀ ₀ ₀
  



  4. For multi-dimensional sensitivity:
     f/ x∂ ∂ i  (f(x  + h*e≈ ₀ i) - f(x  - h*e₀ i)) / (2h)
     where ei is the i-th unit vector

Appendix D: Data Sources and Calibration Parameters

D.1 Climate Data Sources

Temperature Data: - NASA GISTEMP: https://data.giss.nasa.gov/gistemp/ - NOAA Global Climate 
Report: https://www.ncei.noaa.gov/ - Berkeley Earth: http://berkeleyearth.org/ - Hadley Centre 
(HadCRUT5): https://www.metoffice.gov.uk/hadobs/hadcrut5/

CO  Concentration:₂  - Mauna Loa Observatory: https://gml.noaa.gov/ccgg/trends/ - Global Carbon 
Project: https://www.globalcarbonproject.org/ - NOAA GML: https://gml.noaa.gov/

Sea Level: - NOAA Sea Level Trends: https://tidesandcurrents.noaa.gov/sltrends/ - NASA Sea Level
Portal: https://sealevel.nasa.gov/ - CSIRO: https://www.cmar.csiro.au/sealevel/

Climate Projections: - CMIP6 (Coupled Model Intercomparison Project): 
https://esgf-node.llnl.gov/projects/cmip6/ - IPCC Data Distribution Centre: https://www.ipcc-data.org/

D.2 Economic and Financial Data

GDP and Macroeconomic: - World Bank World Development Indicators: 
https://databank.worldbank.org/ - IMF World Economic Outlook: 
https://www.imf.org/en/Publications/WEO - OECD Statistics: https://stats.oecd.org/ - Penn World 
Table: https://www.rug.nl/ggdc/productivity/pwt/

Financial Markets: - Bloomberg Terminal - Refinitiv Eikon - Yahoo Finance: 
https://finance.yahoo.com/ - FRED (Federal Reserve Economic Data): https://fred.stlouisfed.org/

Carbon Prices: - World Bank Carbon Pricing Dashboard: 
https://carbonpricingdashboard.worldbank.org/ - EU ETS: https://ember-climate.org/data/carbon-price-
viewer/ - ICAP (International Carbon Action Partnership): https://icapcarbonaction.com/



D.3 Calibrated Parameters for Models

Table D.1: Climate Physics Parameters

Parameter Symbol Value Source
Forcing from CO  doubling₂ F2x 3.71 W/m² IPCC AR6 [3]
Climate feedback parameter λ 1.1 W/m²/K IPCC AR6 [3]
Equilibrium climate sensitivity ECS 3.0°C (2.5-

4.0)
IPCC AR6 [3]

Transient climate response TCR 1.8°C (1.4-
2.2)

IPCC AR6 [3]

Pre-industrial CO₂ C₀ 280 ppm IPCC AR6 [3]
Current CO  (2023)₂ C 420 ppm NOAA [10]
Airborne fraction AF 0.44 Global Carbon Budget 

[10]

Table D.2: Economic Damage Function Parameters

Model Parameter Value Source
BHM β₁ 0.0127 Burke et al. (2015) 

[13]
BHM β₂ -0.0005 Burke et al. (2015) 

[13]
BHM Toptimal 13°C Burke et al. (2015) 

[13]
DICE-
2016R2

π₂ 0.00236 Nordhaus (2017) [19]

FUND αag -0.04 Tol (2002) [23]
FUND βag -0.0014 Tol (2002) [23]



Table D.3: Financial Parameters

Parameter Symbol
Typical 
Value Range

Risk-free rate rf 2-3% 0-5%
Equity risk premium ERP 5-7% 3-10%
Discount rate (social) ρ 1.5% 0.5-3%
Elasticity of marginal utility η 1.5 1.0-2.0
Corporate WACC WACC 8-10% 5-15%

Table D.4: NGFS Scenario Parameters (2050)

Scenario Carbon Price ($/tCO )₂ Temperature (°C) Renewable Share
Net Zero 2050 600 1.5 70%
Below 2°C 300 1.7 60%
Delayed Transition 1,000 1.8 75%
NDCs 25 2.5 40%
Current Policies 10 3.0 30%

Source: NGFS (2023) [50]

D.4 Conversion Factors

Carbon Units: - 1 GtC = 3.67 GtCO  - 1 ppm CO   2.13 GtC - 1 tonne CO  = 0.273 tonnes C₂ ₂ ≈ ₂

Energy Units: - 1 TWh = 10  kWh - 1 EJ = 277.78 TWh - 1 Mtoe = 11.63 TWh⁹

Temperature: - °C = (°F - 32) × 5/9 - K = °C + 273.15

D.5 Model Calibration Notes

Climate Sensitivity: The IPCC AR6 assessment [3] narrowed the range of ECS to 2.5-4.0°C (likely
range) based on multiple lines of evidence: 1. Process understanding from climate models 2. 
Historical warming observations 3. Paleoclimate proxy data



For financial modeling, we recommend: - Central estimate: ECS = 3.0°C - Uncertainty: Log-normal
distribution with  = 0.4σ

Damage Functions: The Burke-Hsiang-Miguel (BHM) parameters [13] are estimated from historical 
panel data (1960-2010) for 166 countries. The quadratic form captures: - Positive effects of 
warming in cold countries - Negative effects in warm countries - Optimal temperature around 13°C

For financial applications: - Use BHM for country/region-specific analysis - Use DICE for global 
aggregate analysis - Consider both for robustness checks

Discount Rates: The choice of discount rate is contentious in climate economics [32]. We 
recommend: - Market discount rate (private sector): Use WACC (8-10%) - Social discount rate 
(policy analysis): Use Ramsey formula:  + *g -  = pure time preference (1-2%) -  = elasticityρ η ρ η

of marginal utility (1.5) - g = growth rate (2%) - Yields approximately 4-5%

Carbon Prices: NGFS scenarios [50] provide carbon price trajectories. For financial modeling: - 
Extract prices for specific years (2030, 2050, 2100) - Interpolate using exponential growth: P(t) 
= P  * exp(r₀ carbon * t) - Estimate rcarbon from scenario data

Appendix E: Software and Computational Tools

E.1 Recommended Software

Statistical Computing: - R (with packages: tidyverse, ggplot2, forecast) - Python (with libraries: 
numpy, pandas, scipy, statsmodels) - MATLAB - Julia

Monte Carlo Simulation: - @RISK (Excel add-in) - Crystal Ball (Oracle) - Python: numpy.random, 
scipy.stats - R: mc2d, mc package

PDE Solvers: - MATLAB PDE Toolbox - Python: FiPy, FEniCS - R: ReacTran package

Optimization: - GAMS (General Algebraic Modeling System) - AMPL - Python: scipy.optimize, 
cvxpy - R: optim, nloptr



Climate Models: - DICE model: Excel version available at https://williamnordhaus.com/ - FUND 
model: Code at http://www.fund-model.org/ - PAGE model: Available upon request from Cambridge
- REMIND: Open-source at https://github.com/remindmodel/remind

E.2 Python Code Examples

Example: Monte Carlo Climate VaR

import numpy as np
import matplotlib.pyplot as plt

def climatevar_simulation(N=10000, T=30, alpha=0.95):
    """
    Monte Carlo simulation for Climate Value-at-Risk
    
    Parameters:
    N: number of simulations
    T: time horizon (years)
    alpha: confidence level for VaR
    
    Returns:
    VaR, ES, lossdistribution

    """
    # Parameters
    CFbaseline = 100  # Million $ per year
    r = 0.08  # Discount rate
    
    # Initialize results
    PV = np.zeros(N)
    
    for i in range(N):
        # Draw climate parameters



        ECS = np.random.lognormal(np.log(3.0), 0.4)
        beta2 = np.random.normal(0.00236, 0.001)
        
        # Simulate temperature path
        Tpath = np.zeros(T)
        for t in range(1, T):
            Tpath[t] = Tpath[t-1] + 0.05 + 0.01 * np.random.randn()
        
        # Calculate damages and cash flows
        CF = np.zeros(T)
        for t in range(T):
            damage = beta2 * Tpath[t]**2
            CF[t] = CFbaseline * (1 - damage)
        
        # Calculate present value
        discountfactors = np.array([(1+r)**(-t) for t in range(1, T+1)])
        PV[i] = np.sum(CF * discountfactors)
    
    # Calculate baseline PV (no climate change)
    PVbaseline = CFbaseline * np.sum([(1+r)**(-t) for t in range(1, T+1)])
    
    # Calculate losses
    losses = PVbaseline - PV
    
    # Calculate VaR and ES
    VaR = np.percentile(losses, 100*alpha)
    ES = np.mean(losses[losses >= VaR])
    
    return VaR, ES, losses



# Run simulation
VaR95, ES95, losses = climatevar_simulation()
print(f"95% VaR: ${VaR95:.2f}M")
print(f"95% ES: ${ES95:.2f}M")

# Plot loss distribution
plt.hist(losses, bins=50, density=True, alpha=0.7)
plt.axvline(VaR95, color='r', linestyle='--', label=f'95% VaR: ${VaR95:.1f}M')
plt.xlabel('Loss ($M)')
plt.ylabel('Probability Density')
plt.title('Climate Value-at-Risk Distribution')
plt.legend()
plt.show()
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